A SIMPLIFIED PROOF OF A THEOREM ON THE DIFFERENCE OF THE MOORE-PENROSE INVERSES OF 2 POSITIVE SEMIDEFINITE MATRICES

被引:3
|
作者
ANDREWS, DWK
PHILLIPS, PCB
机构
关键词
D O I
10.1080/03610928608829289
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:2973 / 2975
页数:3
相关论文
共 50 条
  • [41] On weighted Moore-Penrose inverses over antirings
    Zhang, Li-Mei
    Zhao, Jian-Li
    Qiao, Li-Shan
    PROCEEDINGS OF THE 14TH CONFERENCE OF INTERNATIONAL LINEAR ALGEBRA SOCIETY, 2007, : 436 - 439
  • [42] The Moore-Penrose inverses of lower triangular operators
    Li, Yuan
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (03): : 229 - 235
  • [43] Representations for Moore-Penrose inverses in Hilbert spaces
    Wei, YM
    Ding, J
    APPLIED MATHEMATICS LETTERS, 2001, 14 (05) : 599 - 604
  • [44] GENERAL ELEMENT OF GENERALIZED MOORE-PENROSE INVERSES
    GABRIEL, R
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1982, 27 (06): : 689 - 702
  • [45] Nonnegative Moore-Penrose inverses of gram operators
    Kurmayya, T.
    Sivakumar, K. C.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (2-3) : 471 - 476
  • [46] Weighted Moore-Penrose Inverses and Weighted Core Inverses in Rings with Involution
    Zhu, Huihui
    Wang, Qing-Wen
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2021, 42 (04) : 613 - 624
  • [47] On the Moore-Penrose inverse of a sum of matrices
    Baksalary, Oskar Maria
    Sivakumar, K. C.
    Trenkler, Goetz
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (02): : 133 - 149
  • [48] Weighted Moore-Penrose Inverses and Weighted Core Inverses in Rings with Involution
    Huihui Zhu
    Qing-Wen Wang
    Chinese Annals of Mathematics, Series B, 2021, 42 : 613 - 624
  • [50] Weighted Moore-Penrose Inverses and Weighted Core Inverses in Rings with Involution
    Huihui ZHU
    QingWen WANG
    Chinese Annals of Mathematics,Series B, 2021, (04) : 613 - 624