A SIMPLIFIED PROOF OF A THEOREM ON THE DIFFERENCE OF THE MOORE-PENROSE INVERSES OF 2 POSITIVE SEMIDEFINITE MATRICES

被引:3
|
作者
ANDREWS, DWK
PHILLIPS, PCB
机构
关键词
D O I
10.1080/03610928608829289
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:2973 / 2975
页数:3
相关论文
共 50 条
  • [2] On weighted Moore-Penrose inverses of incline matrices
    Qiao, Lishan
    Zhang, Limei
    Advances in Matrix Theory and Applications, 2006, : 349 - 352
  • [3] Moore-Penrose inverses of certain bordered matrices
    Jeyaraman, I.
    Divyadevi, T.
    JOURNAL OF ANALYSIS, 2024, 32 (04): : 2077 - 2098
  • [4] POLYGONS, CIRCULANT MATRICES, AND MOORE-PENROSE INVERSES
    WONG, ET
    AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (07): : 509 - 515
  • [5] Computing Moore-Penrose Inverses with Polynomials in Matrices
    Bajo, Ignacio
    AMERICAN MATHEMATICAL MONTHLY, 2021, 128 (05): : 446 - 456
  • [6] On Nonnegative Moore-Penrose Inverses of Perturbed Matrices
    Jose, Shani
    Sivakumar, K. C.
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [7] CATEGORIES OF MATRICES WITH ONLY OBVIOUS MOORE-PENROSE INVERSES
    ROBINSON, DW
    PUYSTJENS, R
    VANGEEL, J
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 97 : 93 - 102
  • [8] On matrices whose Moore-Penrose inverses are ray unique
    Bu, Changjiang
    Gu, Weiqi
    Zhou, Jiang
    Wei, Yimin
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (06): : 1236 - 1243
  • [9] The generalized Moore-Penrose inverses of matrices over rings
    Yuan, Wangui
    Liao, Zuhua
    Advances in Matrix Theory and Applications, 2006, : 289 - 292
  • [10] Rank equalities for block matrices and their Moore-Penrose inverses
    Tian, YG
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (02): : 483 - 510