NEW BOUNDS ON THE REDUNDANCY OF HUFFMAN CODES

被引:28
|
作者
CAPOCELLI, RM [1 ]
DESANTIS, A [1 ]
机构
[1] UNIV SALERNO,DIPARTIMENTO INFORMAT & APPLICAZ,BARONISSI,ITALY
关键词
REDUNDANCY; REDUNDANCY OF HUFFMAN CODES; BOUNDS ON THE REDUNDANCY;
D O I
10.1109/18.87001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Upper and lower bounds, which are the tightest possible, are obtained for the redundancy r of binary Huffman codes for a memoryless source whose least likely source letter probability is known. Also provided are tight upper bounds on r in terms of the most and the least likely source letter probabilities.
引用
收藏
页码:1095 / 1104
页数:10
相关论文
共 50 条
  • [21] New upper bounds on the redundancy of optimal one-to-one codes
    Huang, Tien-Ke
    Cheng, Jay
    Wang, Chin-Liang
    2007 10TH CANADIAN WORKSHOP ON INFORMATION THEORY, 2007, : 160 - 163
  • [22] Probabilistic bounds on the trapping redundancy of linear codes
    Tsunoda, Yu
    Fujiwara, Yuichiro
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1745 - 1749
  • [23] Asymptotic average redundancy of Huffman (and Shannon-Fano) block codes
    Szpankowski, W
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 370 - 370
  • [24] Bounds on Separating Redundancy of Linear Codes and Rates of X-Codes
    Tsunoda, Yu
    Fujiwara, Yuichiro
    Ando, Hana
    Vandendriessche, Peter
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (12) : 7577 - 7593
  • [25] A new bound for the data expansion of Huffman codes
    DePrisco, R
    DeSantis, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (06) : 2028 - 2032
  • [26] DETERMINING REDUNDANCY BOUNDS FOR ARITHMETICAL ERROR-CORRECTING CODES
    TROFIMOV, NN
    ENGINEERING CYBERNETICS, 1968, (01): : 94 - &
  • [27] REDUNDANCY BOUNDS FOR MULTIPLE-BURST CORRECTING-CODES
    BENELLI, G
    BIANCIARDI, C
    CAPPELLINI, V
    ALTA FREQUENZA, 1978, 47 (09): : 679 - 683
  • [28] Refined Upper Bounds on Stopping Redundancy of Binary Linear Codes
    Yakimenka, Yauhen
    Skachek, Vitaly
    2015 IEEE INFORMATION THEORY WORKSHOP (ITW), 2015,
  • [29] Tight Upper Bounds on the Redundancy of Optimal Binary AIFV Codes
    Hu, Weihua
    Yamamoto, Hirosuke
    Honda, Junya
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 6 - 10
  • [30] Ds-bounds for cyclic codes: new bounds for abelian codes
    Bernal, J. J.
    Simon, J. J.
    Guerreiro, M.
    PROCEEDINGS OF 2016 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA 2016), 2016, : 676 - 680