The H(infinity) control theory is applied to the compensator design of a nonlinear nuclear reactor model, and the results are compared with standard linear quadratic Gaussian (LQG) control. The reactor model is assumed to be provided with a control rod drive system having the compensation of rod position feedback. The nonlinearity of the reactor model exerts a great influence on the stability of the control system, and hence, it is desirable for a power control system of a nuclear reactor to achieve robust stability and to improve the sensitivity of the feedback control system. A computer simulation based on a power control system synthesized by LQG control was performed revealing that the control system has some stationary offset and less stability. Therefore, here, attention is given to the development of a methodology for robust control that can withstand exogenous disturbances and nonlinearity in view of system parameter changes. The developed methodology adopts H(infinity) control theory in the feedback system and shows interesting features of robustness. The results of the computer simulation indicate that the feedback control system constructed by the developed H(infinity) compensator possesses sufficient robustness of control on the stability and disturbance attenuation, which are essential for the safe operation of a nuclear reactor.