ANALYZING THE STRUCTURE OF A CLASS OF LINEAR AUTOMATA OVER A RING Z(p)(k)

被引:0
|
作者
Skobelev, V. V. [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Appl Math & Mech, Donetsk, Ukraine
关键词
linear automaton; finite ring; state equivalence; parametric identification; initial state identification; fixed point; canonical form;
D O I
10.1007/s10559-008-9003-2
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Basic finite-automaton characteristics are established for the class of all linear automata and information-lossless automata over a ring. The complexities of solving problems of parametric identification and initial-state identification are analyzed. The sets of fixed points for mappings realized by initial automata are characterized. Canonical forms are proposed for linear automata over the ring.
引用
收藏
页码:362 / 374
页数:13
相关论文
共 50 条
  • [11] Structure of linear codes over the ring Bk
    Irwansyah
    Suprijanto, Djoko
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 58 (1-2) : 755 - 775
  • [12] ANALYSIS OF NON-LINEAR AUTOMATA WITH A LAG 2 OVER A FINITE RING
    Skobelev, V. V.
    Skobelev, V. G.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2010, 7 (01): : 68 - 85
  • [13] Some results on linear codes over the ring Z4
    Li, Ping
    Guo, Xuemei
    Zhu, Shixin
    Kai, Xiaoshan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 54 (1-2) : 307 - 324
  • [14] On the linear codes over the ring R-p
    Dertli, Abdullah
    Cengellenmis, Yasemin
    Eren, Senol
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (02)
  • [15] On the normal structure of the general linear group over a ring
    Stepanov A.V.
    Journal of Mathematical Sciences, 1999, 95 (2) : 2146 - 2155
  • [16] Some anzahl theorems in vector space over Z/p(k)Z
    You, H
    Nan, JZ
    ACTA MATHEMATICA SCIENTIA, 1996, 16 (01) : 81 - 88
  • [17] General Linear Group over a Ring of Integers of Modulo k
    Han, Juncheol
    KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (02): : 255 - 260
  • [18] An algorithm to restore a linear recurring sequence over the ring R = Z(p)(n) from a linear complication of its highest coordinate sequence
    Bylkov, D. N.
    Nechaev, A. A.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2010, 20 (5-6): : 591 - 609
  • [19] On the Structure of Linear and Cyclic Codes over a Finite Chain Ring
    Graham H. Norton
    Ana Sălăgean
    Applicable Algebra in Engineering, Communication and Computing, 2000, 10 : 489 - 506
  • [20] On the Regularity Sylow's p-subgroups of Symplectic and Orthogonal Groups over Ring Z/p(m)Z
    Kolesnikov, Sergey G.
    Maltsev, Nikolay V.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2011, 4 (04): : 489 - 497