A NOTE ON COMPUTING SIMPLE BIFURCATION POINTS

被引:5
|
作者
JANOVSKY, V
机构
关键词
D O I
10.1007/BF02243803
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:27 / 36
页数:10
相关论文
共 50 条
  • [21] Computing simple paths from given points inside a polygon
    Tan, Xuehou
    Jiang, Bo
    DISCRETE APPLIED MATHEMATICS, 2019, 252 : 67 - 76
  • [22] Computing a geodesic two-center of points in a simple polygon
    Oh, Eunjin
    Bae, Sang Won
    Ahn, Hee-Kap
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2019, 82 : 45 - 59
  • [23] PROBLEM OF BIFURCATION POINTS
    SKRIPNIK, IV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR, 1971, (02): : 126 - &
  • [24] A METHOD FOR COMPUTING SINGULAR POINTS AND BIFURCATION POINTS OF QUASI-PERIODIC SOLUTIONS TO QUASI-PERIODIC DIFFERENTIAL-SYSTEMS
    YAMAMOTO, N
    IEICE TRANSACTIONS ON COMMUNICATIONS ELECTRONICS INFORMATION AND SYSTEMS, 1991, 74 (06): : 1447 - 1454
  • [25] A CONVERGENCE-IMPROVING ITERATIVE METHOD FOR COMPUTING PERIODIC-ORBITS NEAR BIFURCATION POINTS
    VRAHATIS, MN
    BOUNTIS, T
    BUDINSKY, N
    JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 88 (01) : 1 - 14
  • [26] A note on bifurcation control
    Chen, GR
    Li, CP
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (03): : 667 - 669
  • [27] Bifurcation points and asymptotic bifurcation points of nonlinear operators in M-PN spaces
    Li, Qiuying
    Zhu, Chuanxi
    Wang, Sanhua
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) : 4960 - 4966
  • [28] Computing multiple turning points by using simple extended systems and computational differentiation
    Pönisch, G.
    Schnabel, U.
    Schwetlick, H.
    Optimization Methods and Software, 1999, 10 (04): : 639 - 668
  • [29] Points of note
    不详
    AVANT SCENE OPERA, 2010, (259): : 3 - 4
  • [30] Computing multiple turning points by using simple extended systems and computational differentiation
    Pönisch, G
    Schnabel, U
    Schwetlick, H
    OPTIMIZATION METHODS & SOFTWARE, 1999, 10 (04): : 639 - 668