Fabrication of filaments of PCL and PVA reinforced with HAp to be used in 3D Printing

被引:2
|
作者
Guillen-Giron, Teodolito [1 ]
机构
[1] Inst Tecnol Costa Rica, Escuela Ciencia & Ingn Mat, Cartago, Costa Rica
来源
TECNOLOGIA EN MARCHA | 2018年 / 31卷 / 02期
关键词
Filaments; polyvinyl alcohol; polycaprolactone; hydroxyapatite; 3D printing;
D O I
10.18845/tm.v31i2.3624
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The aim of this work was the manufacturing of polyvinyl alcohol (PVA) and polycaprolactone (PCL) filaments to be used in 3D printing with Fused Deposition Modeling (FDM) technology. This study was first oriented in the fabrication of filaments with these biopolymers by using extrusion and then in the internal reinforcement of the filaments with hydroxyapatite (HAp) in order to improve their mechanical properties. Previous to the manufacturing process, PVA, PCL and HAp were characterized by using X-ray diffraction to observe the crystallographic order of the polymeric chains. The infrared spectroscopy was used to analyze the functional groups that are present in these biopolymers and consequently their possible influence during the extrusion. Thermal analysis were vitals in order to stablish the manufacturing conditions including the melting point and degradation temperature of the tested materials. This study showed the challenges of the implant manufacturing by using 3D printing with biopolymers. The obtained results evidence that attention should be placed in the fabrication of biopolymeric filaments for future development of functional and personalized implants.
引用
收藏
页码:58 / 71
页数:14
相关论文
共 50 条
  • [31] Preparation and properties of 3D printing continuous fiber reinforced polycarbonate composite prepreg filaments
    Yang L.
    Liu B.
    Liu T.
    Gao Y.
    Tian X.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (10): : 5654 - 5655
  • [32] Reinforced Polymer Composite Filaments in Fused Deposition Modeling of 3D Printing Technology: A Review
    Joshua, R. Nekin
    Sakthivel, Aravind Raj
    ADVANCED ENGINEERING MATERIALS, 2025,
  • [33] Characterization and fabrication of bio-composite filaments for fused deposition modeling 3D printing
    Phengchan, P.
    Chaijaruwanich, A.
    Nakkiew, W.
    Pitjamit, S.
    INTERNATIONAL CONFERENCE ON ENGINEERING, APPLIED SCIENCES AND TECHNOLOGY 2019, 2019, 639
  • [34] 3D printing filaments from plasticized Polyhydroxybutyrate/Polylactic acid blends reinforced with hydroxyapatite
    Kanabenja, Warrayut
    Passarapark, Kunanon
    Subchokpool, Thanaporn
    Nawaaukkaratharnant, Nithiwach
    Roman, Allen Jonathan
    Osswald, Tim A.
    Aumnate, Chuanchom
    Potiyaraj, Pranut
    ADDITIVE MANUFACTURING, 2022, 59
  • [35] A Review of Natural Fiber-Based Filaments for 3D Printing: Filament Fabrication and Characterization
    Ahmad, Mohd Nazri
    Ishak, Mohamad Ridzwan
    Taha, Mastura Mohammad
    Mustapha, Faizal
    Leman, Zulkiflle
    MATERIALS, 2023, 16 (11)
  • [36] Structured multimaterial filaments for 3D printing of optoelectronics
    Gabriel Loke
    Rodger Yuan
    Michael Rein
    Tural Khudiyev
    Yash Jain
    John Joannopoulos
    Yoel Fink
    Nature Communications, 10
  • [37] Polycaprolactone with Glass Beads for 3D Printing Filaments
    Kovacova, Maria
    Vykydalova, Anna
    Spitalsky, Zdenko
    PROCESSES, 2023, 11 (02)
  • [38] Study of the Thermal Properties of Filaments for 3D Printing
    Trhlikova, Lucie
    Zmeskal, Oldrich
    Psencik, Petr
    Florian, Pavel
    THERMOPHYSICS 2016: 21ST INTERNATIONAL MEETING, 2016, 1752
  • [39] Structured multimaterial filaments for 3D printing of optoelectronics
    Loke, Gabriel
    Yuan, Rodger
    Rein, Michael
    Khudiyev, Tural
    Jain, Yash
    Joannopoulos, John
    Fink, Yoel
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [40] Electrophysical Properties of Carbon Filaments for 3D Printing
    Kuleshov, Grigoriy E.
    Shematilo, Tatyana N.
    Gering, Maxim O.
    2020 21ST INTERNATIONAL CONFERENCE ON YOUNG SPECIALISTS ON MICRO/NANOTECHNOLOGIES AND ELECTRON DEVICES (EDM), 2020, : 123 - 127