THE AUTOMORPHISM GROUP OF THE Q-ARY REED-MULLER CODES

被引:0
|
作者
BERGER, T [1 ]
CHARPIN, P [1 ]
机构
[1] INST NATL RECH INFORMAT & AUTOMAT,F-78153 LE CHESNAY,FRANCE
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the automorphism group of the q-ary Reed-Muller codes, q = p(r) and p is a prime, is the affine group of F(q)m over F(q).
引用
收藏
页码:883 / 886
页数:4
相关论文
共 50 条
  • [21] Quaternary Reed-Muller codes
    Borges, J
    Fernández, C
    Phelps, KT
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (07) : 2686 - 2691
  • [22] ON A CONJECTURE ON REED-MULLER CODES
    WASAN, SK
    GAMES, RA
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1984, 56 (02) : 269 - 271
  • [23] Reed-Muller Codes Polarize
    Abbe, Emmanuel
    Ye, Min
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (12) : 7311 - 7332
  • [24] GENERALIZED REED-MULLER CODES
    KASAMI, T
    LIN, S
    PETERSON, WW
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1968, 51 (03): : 96 - &
  • [25] A NOTE ON REED-MULLER CODES
    DASS, BK
    MUTTOO, SK
    DISCRETE APPLIED MATHEMATICS, 1980, 2 (04) : 345 - 348
  • [26] GENERALIZED REED-MULLER CODES
    WEISS, E
    INFORMATION AND CONTROL, 1962, 5 (03): : 213 - &
  • [27] Reed-Muller codes polarize
    Abbe, Emmanuel
    Ye, Min
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 273 - 286
  • [28] PROJECTIVE REED-MULLER CODES
    SORENSEN, AB
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) : 1567 - 1576
  • [29] Quantum Reed-Muller codes
    Steane, AM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (05) : 1701 - 1703
  • [30] Symmetric Reed-Muller Codes
    Yan, Wei
    Lin, Sian-Jheng
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (07) : 3937 - 3947