Invariant sets for polynomials

被引:0
|
作者
Burkov, VN
Dzyubko, SI
机构
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Polynomials of degree n, defined on a section [a,b], are examined. A procedure is described for subdividing the section into m subsets such that the areas limited by any polynomial are equal for all the subsets, regardless of the specific type of polynomial.
引用
收藏
页码:1653 / 1655
页数:3
相关论文
共 50 条
  • [41] The topology of Julia sets for polynomials
    尹永成
    Science China Mathematics, 2002, (08) : 1020 - 1024
  • [42] Topology of Julia sets for polynomials
    Yin, Yongcheng
    Science in China, Series A: Mathematics, Physics, Astronomy, 2002, 45 (08):
  • [43] The topology of Julia sets for polynomials
    Yin, YC
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2002, 45 (08): : 1020 - 1024
  • [44] ON POLYNOMIALS WITH RELATED LEVEL SETS
    ROSENFEL.M
    CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (01): : 137 - &
  • [45] INCLUSION SETS FOR ROOTS OF POLYNOMIALS
    BAUER, FL
    NUMERISCHE MATHEMATIK, 1966, 9 (02) : 173 - &
  • [46] Julia sets of expanding polynomials
    Blokh, A
    Cleveland, C
    Misiurewicz, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 1691 - 1718
  • [47] Julia Sets of Orthogonal Polynomials
    Jacob Stordal Christiansen
    Christian Henriksen
    Henrik Laurberg Pedersen
    Carsten Lunde Petersen
    Potential Analysis, 2019, 50 : 401 - 413
  • [48] Chebyshev Polynomials on Compact Sets
    Vilmos Totik
    Potential Analysis, 2014, 40 : 511 - 524
  • [49] On Householder sets for matrix polynomials
    Cameron, Thomas R.
    Psarrakos, Panayiotis J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 585 : 105 - 126
  • [50] Sets of recurrence and generalized polynomials
    Bergelson, V
    Haland, IJ
    CONVERGENCE IN ERGODIC THEORY AND PROBABILITY, 1996, 5 : 91 - 110