PROBLEM OF MINIMUM OF A QUADRATIC FUNCTIONAL

被引:0
|
作者
HERMES, H
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:56 / &
相关论文
共 50 条
  • [21] Rough-fuzzy quadratic minimum spanning tree problem
    Majumder, Saibal
    Kar, Samarjit
    Pal, Tandra
    EXPERT SYSTEMS, 2019, 36 (02)
  • [22] A swarm intelligence approach to the quadratic minimum spanning tree problem
    Sundar, Shyam
    Singh, Alok
    INFORMATION SCIENCES, 2010, 180 (17) : 3182 - 3191
  • [23] A compact quadratic model and linearizations for the minimum linear arrangement problem
    de Andrade, Rafael Castro
    Bonates, Tibérius de Oliveira e
    Campêlo, Manoel
    Ferreira, Mardson da Silva
    Discrete Applied Mathematics, 2022, 323 : 134 - 148
  • [24] A compact quadratic model and linearizations for the minimum linear arrangement problem
    de Andrade, Rafael Castro
    Bonates, Tiberius de Oliveira e
    Campelo, Manoel
    Ferreira, Mardson da Silva
    DISCRETE APPLIED MATHEMATICS, 2022, 323 : 134 - 148
  • [25] A characterization of linearizable instances of the quadratic minimum spanning tree problem
    Ante Ćustić
    Abraham P. Punnen
    Journal of Combinatorial Optimization, 2018, 35 : 436 - 453
  • [26] Minimum energy configurations on a toric lattice as a quadratic assignment problem
    Brosch D.
    de Klerk E.
    Discrete Optimization, 2022, 44
  • [27] A quadratic programming approach to the minimum energy problem of a mobile robot
    Potts, Alain Segundo
    da Cruz, Jose Jaime
    Bernardi, Reinaldo
    ICINCO 2008: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL RA-1: ROBOTICS AND AUTOMATION, VOL 1, 2008, : 245 - +
  • [28] A characterization of linearizable instances of the quadratic minimum spanning tree problem
    Custic, Ante
    Punnen, Abraham P.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (02) : 436 - 453
  • [29] Minimizing problem for quadratic functional in Hubert space
    Department of Mathematics, Zhejiang University, Hangzhou 310027, China
    Progress in Natural Science, 2000, 10 (09) : 664 - 666
  • [30] The discrete minimum principle for quadratic spline discretization of a singularly perturbed problem
    Surla, K.
    Uzelac, Z.
    Teofanov, Lj
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (08) : 2490 - 2505