JULIA SETS

被引:0
|
作者
POPPE, C [1 ]
机构
[1] UNIV HEIDELBERG,SONDERFORSCHUNGSBEREICH 123,D-6900 HEIDELBERG,FED REP GER
来源
PHYSICA D | 1984年 / 11卷 / 03期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:403 / 403
页数:1
相关论文
共 50 条
  • [1] Julia sets converging to filled quadratic Julia sets
    Kozma, Robert T.
    Devaney, Robert L.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 171 - 184
  • [2] Buried Julia Components and Julia Sets
    Wang, Youming
    Zhan, Guoping
    Liao, Liangwen
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (01)
  • [3] Buried Julia Components and Julia Sets
    Youming Wang
    Guoping Zhan
    Liangwen Liao
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [4] JULIA SETS AS BURIED JULIA COMPONENTS
    Wang, Youming
    Yang, Fei
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (10) : 7287 - 7326
  • [5] Julia sets and wild Cantor sets
    Fletcher, Alastair
    Wu, Jang-Mei
    GEOMETRIAE DEDICATA, 2015, 174 (01) : 169 - 176
  • [6] THE GEOMETRY OF JULIA SETS
    AARTS, JM
    OVERSTEEGEN, LG
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (02) : 897 - 918
  • [7] Disconnected Julia sets as buried Julia components
    Xiao, Yingqing
    Yang, Fei
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (04)
  • [8] Fractals: Sets of Julia and Sets of Mandelbrot
    Miranda, Aldicio J.
    SIGMAE, 2012, 1 (01): : 110 - 118
  • [9] The ω-limit sets of quadratic Julia sets
    Barwell, Andrew D.
    Raines, Brian E.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 337 - 358
  • [10] Julia sets and wild Cantor sets
    Alastair Fletcher
    Jang-Mei Wu
    Geometriae Dedicata, 2015, 174 : 169 - 176