Complexity of Implementation of Boolean Functions by Real Formulas

被引:2
|
作者
Gashkov, S. B. [1 ]
Vegner, Ya. V. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.3103/S0027132208020083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Upper complexity estimates are proved for implementation of Boolean functions by formulas in bases consisting of a finite number of continuous real functions and a continuum of constants. For some bases upper complexity estimates coincide with lower ones.
引用
收藏
页码:76 / 78
页数:3
相关论文
共 50 条
  • [41] THE MONOTONE CIRCUIT COMPLEXITY OF BOOLEAN FUNCTIONS
    ALON, N
    BOPPANA, RB
    COMBINATORICA, 1987, 7 (01) : 1 - 22
  • [42] On the Complexity of Minimizing Quasicyclic Boolean Functions
    Chukhrov I.P.
    Journal of Applied and Industrial Mathematics, 2018, 12 (03) : 426 - 441
  • [43] On the Complexity of Boolean Functions in Different Characteristics
    Gopalan, Parikshit
    Lovett, Shachar
    Shpilka, Amir
    PROCEEDINGS OF THE 24TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, 2009, : 173 - +
  • [44] RESEARCHING THE COMPLEXITY OF BOOLEAN FUNCTIONS WITH COMPUTERS
    Toran, Jacobo
    Amano, Kazuyuki
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2010, (101): : 64 - 91
  • [45] Query complexity of Boolean functions on slices
    Byramji, Farzan
    DISCRETE MATHEMATICS, 2024, 347 (06)
  • [46] On a generalization complexity measure for Boolean functions
    Franco, L
    Anthony, M
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 973 - 978
  • [47] Complexity of decision trees for boolean functions
    Freivalds, R
    Miyakawa, M
    Rosenberg, IG
    33RD INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2003, : 253 - 255
  • [48] Average complexity of symmetric Boolean functions
    Chashkin, A.V.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 2003, (01): : 16 - 20
  • [49] The generalized complexity of linear Boolean functions
    Redkin, Nikolay P.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2020, 30 (01): : 39 - 44
  • [50] The complexity of modular decomposition of Boolean functions
    Bioch, JC
    DISCRETE APPLIED MATHEMATICS, 2005, 149 (1-3) : 1 - 13