SPECTRAL ESTIMATES OF CAUCHY TRANSFORM IN L-2(OMEGA)

被引:17
|
作者
ARAZY, J
KHAVINSON, D
机构
[1] HAIFA UNIV,DEPT MATH,IL-31999 HAIFA,ISRAEL
[2] UNIV CALIF IRVINE,DEPT MATH,IRVINE,CA 92717
[3] UNIV ARKANSAS,DEPT MATH,FAYETTEVILLE,AR 72701
关键词
AMS Classification Numbers: 47B10; 46E22;
D O I
10.1007/BF01203120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the singular numbers of the Cauchy transform (Cf)(z) = integral D f(xi)/z-xi dA(xi) on L2(D) are asymptotically s(n)(C) almost-equal-to 1/square-root n, while s(n)(C\L(alpha)2(D)) almost-equal-to 1/n (where L(alpha)2(D) is the subspace of analytic functions in L2(D)). Also, the singular numbers of the logarithmic potential (Lf)(z) = integral D f(xi) log (1/\z-xi\) dA(xi) on L2(D) are asympotically s(n)(L) almost-equal-to 1/n, while s(n)(L\L(alpha)2(D)) almost-equal-to 1/n2. Our methods yield the asymptotic behavior of the singular numbers of the Cauchy Transform from L(alpha)2(mu) into L2(nu) where mu and nu are rotation-invariant measures on DBAR.
引用
收藏
页码:901 / 919
页数:19
相关论文
共 50 条