N-DIMENSIONAL DIAMOND, SODALITE AND RARE SPHERE PACKINGS

被引:22
|
作者
OKEEFFE, M
机构
来源
ACTA CRYSTALLOGRAPHICA SECTION A | 1991年 / 47卷
关键词
D O I
10.1107/S0108767391006633
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The diamond, lonsdaleite and sodalite structures are generalized to N dimensions and described. Ring counts and coordination sequences for the N + 1-connected nets are given for N less-than-or-equal-to 6. Simple analytic expressions are given for coordination sequences for diamonds, sodalites and the primitive hypercubic lattice. Replacing the vertices of diamonds and sodalites by regular simplices produces rare (open) stable sphere packings; general expressions for the density of these are given.
引用
收藏
页码:748 / 753
页数:6
相关论文
共 50 条
  • [41] The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras
    V. N. Zhelyabin
    A. A. Popov
    I. P. Shestakov
    Algebra and Logic, 2013, 52 : 277 - 289
  • [42] Wavelet Based Solutions to the Poisson and the Helmholtz Equations on the n-Dimensional Unit Sphere
    Iglewska-Nowak, Ilona
    Stefaniak, Piotr
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2023, 29 (03)
  • [43] The difference between n-dimensional regularization and n-dimensional reduction in QCD
    J. Smith
    W. L. van Neerven
    The European Physical Journal C - Particles and Fields, 2005, 40 : 199 - 203
  • [44] N-dimensional Gregory-Bezier for N-dimensional cellular complexes
    Thery, S
    Bechmann, D
    Bertrand, Y
    WSCG '2001: SHORT COMMUNICATIONS AND POSTERS, 2001, : SH16 - SH23
  • [45] N-dimensional homotopy
    Aronszajn, N
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1936, 202 : 1475 - 1478
  • [46] The n-dimensional hypervolume
    Blonder, Benjamin
    Lamanna, Christine
    Violle, Cyrille
    Enquist, Brian J.
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2014, 23 (05): : 595 - 609
  • [47] N-DIMENSIONAL VOLUME
    EISENSTEIN, M
    KLAMKIN, MS
    SIAM REVIEW, 1959, 1 (01) : 69 - 70
  • [48] ON N-DIMENSIONAL IMPEDANCES
    ZEHEB, E
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1983, 11 (01) : 106 - 108
  • [49] 5 DIMENSIONAL NON-LATTICE SPHERE PACKINGS
    LEECH, J
    CANADIAN MATHEMATICAL BULLETIN, 1967, 10 (03): : 387 - &
  • [50] Maximum density of three-dimensional sphere packings
    Oesterlé, J
    ASTERISQUE, 2000, (266) : 405 - 413