On the rate of convergence of the distribution of the number of cycles of given length in a random permutation with known number of cycles to the limit distributions

被引:0
|
作者
Cherepanova, E. V.
机构
来源
DISCRETE MATHEMATICS AND APPLICATIONS | 2006年 / 16卷 / 04期
关键词
D O I
10.1163/156939206778609741
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let on the set S-n,S-N of all different permutations of degree n with N cycles the uniform distribution be given. We obtain estimates of the rate of convergence of the distribution of the number of cycles of given length in a random permutation of S-n,S-N to the limit distributions as n, N -> infinity in such a way that either n/N -> 1 or n/N -> infinity.
引用
收藏
页码:385 / 400
页数:16
相关论文
共 50 条
  • [41] Quadratic systems with maximum number of limit cycles
    L. A. Cherkas
    Differential Equations, 2009, 45 : 1440 - 1450
  • [42] On the Number of Limit Cycles in Generalized Abel Equations
    Huang, Jianfeng
    Torregrosa, Joan
    Villadelprat, Jordi
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (04): : 2343 - 2370
  • [43] On the number of limit cycles of polynomial Lienard systems
    Han, Maoan
    Romanovski, Valery G.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (03) : 1655 - 1668
  • [44] The number of limit cycles for a family of polynomial systems
    Xiang, GH
    Han, MA
    Zhang, TH
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (11-12) : 1669 - 1678
  • [45] On the number of limit cycles of a generalized Abel equation
    Alkoumi, Naeem
    Torres, Pedro J.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2011, 61 (01) : 73 - 83
  • [46] On the number of limit cycles in asymmetric neural networks
    Hwang, Sungmin
    Folli, Viola
    Lanza, Enrico
    Parisi, Giorgio
    Ruocco, Giancarlo
    Zamponi, Francesco
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [47] On the number of limit cycles in double homoclinic bifurcations
    Han, M
    Chen, J
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (09): : 914 - 928
  • [48] The Number of Limit Cycles of a Polynomial System on the Plane
    Liu, Chao
    Han, Maoan
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [49] ON THE NUMBER OF LIMIT CYCLES OF A POLYNOMIAL DIFFERENTIAL SYSTEM
    Peipei Zuo
    Annals of Applied Mathematics, 2011, (02) : 276 - 282
  • [50] On an estimate of the number of limit cycles in a quadratic system
    L. A. Cherkas
    Differential Equations, 2007, 43 : 643 - 655