3D Numerical Inversion of gravity data from marine surveys and satellite. Application to an Antarctic area

被引:0
|
作者
Surinachi, Emma [1 ]
Leticia Flores-Marquez, E. [2 ]
Chavez, Rene E. [2 ]
机构
[1] Univ Barcelona, Fac Geol, Dept Geodinam & Geofis, E-08028 Barcelona, Spain
[2] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico
来源
FISICA DE LA TIERRA | 2006年 / 18卷
关键词
numerical inversion 3D; espectral factor; gravity anomaly; satelital gravity; oceanic crust; Shackleton Fracture zone; Drake Passage;
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The gravity modelling of the oceanic crust of the central zone of Drake Passage in the Shackleton Fracture zone (Antarctica) is presented as an example of application of a 3D numerical inversion of gravity data. The methods used are discussed. The treated data are from the survey carried out by the Spanish R/V Hesprerides and the data base of the "Global Gravity Grid and Global Sea Floor Topography (GGSFT) (Sandwell & Smith, 1997). The limitations of the Spectral Factor Method (Spector & Grant, 1970) are discussed and analyzed. The Spectral Factor Method allows us to separate the contribution of the different sources to the gravity anomaly. In particular, in the case of marine and satellite data, which we used, we consider the negative effect in the radial spectrum of the indiscriminate combination of data of diverse origin. We also discuss the inversion method employed, which is based on Parker (1973), and the utilization of the water plate correction (WPC) applied to the Free Air anomaly to obtain the Total anomaly. This anomaly is the point of departure of the inversion process.
引用
收藏
页码:205 / 227
页数:23
相关论文
共 50 条
  • [11] 3D geophysical inversion modeling of gravity data to test the 3D geologic model of the Bradys geothermal area, Nevada, USA
    Witter, Jeffrey B.
    Siler, Drew L.
    Faulds, James E.
    Hinz, Nicholas H.
    GEOTHERMAL ENERGY, 2016, 4 (01):
  • [12] 3D joint inversion of gravity and seismic data for imaging interface
    Wu, Zhaocai
    Liu, Tianyou
    NEAR-SURFACE GEOPHYSICS AND HUMAN ACTIVITY, 2008, : 491 - 494
  • [13] 3D Inversion of Gravity Data for Obama Geothermal Field.
    Orouji, B.
    Toushmalani, Reza
    Abbasabadi, Leila
    RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES, 2016, 7 (06): : 1249 - 1253
  • [14] A versatile algorithm for joint 3D inversion of gravity and magnetic data
    Gallardo-Delgado, LA
    Pérez-Flores, MA
    Gómez-Treviño, E
    GEOPHYSICS, 2003, 68 (03) : 949 - 959
  • [15] 3D stochastic inversion of gravity data using cokriging and cosimulation
    Shamsipour, Pejman
    Marcotte, Denis
    Chouteau, Michel
    Keating, Pierre
    GEOPHYSICS, 2010, 75 (01) : I1 - I10
  • [16] 3D Monte Carlo geometry inversion using gravity data
    Wei, Xiaolong
    Sun, Jiajia
    Sen, Mrinal
    GEOPHYSICS, 2024, 89 (03) : G29 - G44
  • [17] Efficient gravity data inversion for 3D topography of a contact surface with application to the Hellenic subduction zone
    Prutkin, I.
    Casten, U.
    COMPUTERS & GEOSCIENCES, 2009, 35 (02) : 225 - 233
  • [18] Improved preconditioned conjugate gradient algorithm and application in 3D inversion of gravity-gradiometry data
    Wang, Tai-Han
    Huang, Da-Nian
    Ma, Guo-Qing
    Meng, Zhao-Hai
    Li, Ye
    APPLIED GEOPHYSICS, 2017, 14 (02) : 301 - 313
  • [19] 3D Geological modelling and gravity inversion of a structurally complex carbonate area: application for karstified massif localization
    Husson, Eglantine
    Guillen, Antonio
    Seranne, Michel
    Courrioux, Gabriel
    Coueffe, Renaud
    BASIN RESEARCH, 2018, 30 (04) : 766 - 782
  • [20] Improved preconditioned conjugate gradient algorithm and application in 3D inversion of gravity-gradiometry data
    Tai-Han Wang
    Da-Nian Huang
    Guo-Qing Ma
    Zhao-Hai Meng
    Ye Li
    Applied Geophysics, 2017, 14 : 301 - 313