3D Numerical Inversion of gravity data from marine surveys and satellite. Application to an Antarctic area

被引:0
|
作者
Surinachi, Emma [1 ]
Leticia Flores-Marquez, E. [2 ]
Chavez, Rene E. [2 ]
机构
[1] Univ Barcelona, Fac Geol, Dept Geodinam & Geofis, E-08028 Barcelona, Spain
[2] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico
来源
FISICA DE LA TIERRA | 2006年 / 18卷
关键词
numerical inversion 3D; espectral factor; gravity anomaly; satelital gravity; oceanic crust; Shackleton Fracture zone; Drake Passage;
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The gravity modelling of the oceanic crust of the central zone of Drake Passage in the Shackleton Fracture zone (Antarctica) is presented as an example of application of a 3D numerical inversion of gravity data. The methods used are discussed. The treated data are from the survey carried out by the Spanish R/V Hesprerides and the data base of the "Global Gravity Grid and Global Sea Floor Topography (GGSFT) (Sandwell & Smith, 1997). The limitations of the Spectral Factor Method (Spector & Grant, 1970) are discussed and analyzed. The Spectral Factor Method allows us to separate the contribution of the different sources to the gravity anomaly. In particular, in the case of marine and satellite data, which we used, we consider the negative effect in the radial spectrum of the indiscriminate combination of data of diverse origin. We also discuss the inversion method employed, which is based on Parker (1973), and the utilization of the water plate correction (WPC) applied to the Free Air anomaly to obtain the Total anomaly. This anomaly is the point of departure of the inversion process.
引用
收藏
页码:205 / 227
页数:23
相关论文
共 50 条
  • [1] CONTINUITY OF GREAT SUMATRAN FAULT IN THE MARINE AREA REVEALED BY 3D INVERSION OF GRAVITY DATA
    Muhammad, Yanis
    Faisal, Abdullah
    Yenny, Assyifa
    Muzakir, Zainal
    Abubakar, Marwan
    Nazli, Ismail
    JURNAL TEKNOLOGI-SCIENCES & ENGINEERING, 2021, 83 (01): : 145 - 155
  • [2] 3D Joint inversion of gravity and gravity tensor data
    ZHAO Simin
    GAO Xiuhe
    QIAO Zhongkun
    JIANG Dandan
    ZHOU Fei
    LIN Song
    Global Geology, 2018, 21 (01) : 55 - 61
  • [3] Practical techniques for 3D resistivity surveys and data inversion
    Loke, MH
    Barker, RD
    GEOPHYSICAL PROSPECTING, 1996, 44 (03) : 499 - 523
  • [4] 3D inversion of borehole gravity data using cokriging
    GENG Meixia
    HUANG Danian
    XU Bowen
    GlobalGeology, 2014, 17 (04) : 225 - 230
  • [5] 3D stochastic joint inversion of gravity and magnetic data
    Shamsipour, Pejman
    Marcotte, Denis
    Chouteau, Michel
    JOURNAL OF APPLIED GEOPHYSICS, 2012, 79 : 27 - 37
  • [6] 3D fast inversion of gravity data based on GPU
    WANG Xusheng
    ZENG Zhaofa
    Global Geology, 2018, 21 (02) : 114 - 119
  • [7] 3D joint inversion of gravity-gradient and borehole gravity data
    Geng, Meixia
    Yang, Qingjie
    Huang, Danian
    EXPLORATION GEOPHYSICS, 2017, 48 (02) : 151 - 165
  • [8] Deep Learning 3D Sparse Inversion of Gravity Data
    Huang, Rui
    Liu, Shuang
    Qi, Rui
    Zhang, Yujie
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2021, 126 (11)
  • [9] The Intergrated Delineation of Geothermal System Area 'Z' Using 3D Inversion of Magnetotelluric Data and Gravity Data
    Wahyu, S.
    Daud, Y.
    Rahadinata, T.
    Fahmi, F.
    Hafidz, M.
    PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2017 (ISCPMS2017), 2018, 2023
  • [10] 3D geophysical inversion modeling of gravity data to test the 3D geologic model of the Bradys geothermal area, Nevada, USA
    Jeffrey B. Witter
    Drew L. Siler
    James E. Faulds
    Nicholas H. Hinz
    Geothermal Energy, 4