2-DIMENSIONAL POLYNOMIAL RESIDUE NUMBER SYSTEM

被引:0
|
作者
YANG, MC [1 ]
WU, JL [1 ]
机构
[1] NATL TAIWAN UNIV,DEPT COMP SCI & INFORMAT ENGN,TAIPEI 10764,TAIWAN
关键词
POLYNOMIAL RESIDUE NUMBER SYSTEM; 2-DIMENSIONAL CONVOLUTIONS; FAST FOURIER TRANSFORM; QUOTIENT FIELD;
D O I
10.1016/0165-1684(94)90075-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The polynomial residue number system (PRNS) has been considered as a useful tool for digital signal processing (DSP) since it can support parallel, carry-free, high speed arithmetic with minimum multiplication count provided that an appropriate modular ring is chosen. In this paper, the properties of two-dimensional (2-D) PRNS are investigated in detail. It is shown that in the 2-D PRNS system, the theoretical lower bound for multiplication count of polynomial products can be achieved in some carefully chosen ring. Application of the proposed 2-D PRNS for computing 2-D circular convolution, which involves intensive multiplication operations, is also presented.
引用
收藏
页码:295 / 306
页数:12
相关论文
共 50 条
  • [1] ON THE POLYNOMIAL RESIDUE NUMBER SYSTEM
    SKAVANTZOS, A
    TAYLOR, FJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (02) : 376 - 382
  • [2] A NEW INTERPRETATION OF POLYNOMIAL RESIDUE NUMBER SYSTEM
    YANG, MC
    WU, JL
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (08) : 2190 - 2191
  • [3] 2-DIMENSIONAL POLYNOMIAL SPLINES
    SHAH, JM
    NUMERISCHE MATHEMATIK, 1970, 15 (01) : 1 - &
  • [4] ON 2-DIMENSIONAL POLYNOMIAL INTERPOLATION
    AKOPYAN, AA
    GEVORGYAN, OV
    SAAKYAN, AA
    RUSSIAN ACADEMY OF SCIENCES SBORNIK MATHEMATICS, 1993, 76 (01) : 211 - 223
  • [5] A PROPOSED HARDWARE STRUCTURE FOR 2-DIMENSIONAL RECURSIVE DIGITAL-FILTERS USING THE RESIDUE NUMBER SYSTEM
    SHAH, AR
    SIDAHMED, MA
    JULLIEN, GA
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (03): : 285 - 288
  • [6] Implementation issues of 2-dimensional polynomial multipliers for signal processing using residue arithmetic
    Skavantzos, A.
    Mitash, N.
    IEE Proceedings E: Computers and Digital Techniques, 1993, 140 (01): : 45 - 53
  • [7] COMPLEX MULTIPLICATION USING THE POLYNOMIAL RESIDUE NUMBER SYSTEM
    SKAVANTZOS, A
    STOURAITIS, T
    ADVANCES IN COMPUTING AND CONTROL, 1989, 130 : 61 - 70
  • [8] Symmetric Encryption Algorithms in a Polynomial Residue Number System
    Yakymenko, I.
    Karpinski, M.
    Shevchuk, R.
    Kasianchuk, M.
    JOURNAL OF APPLIED MATHEMATICS, 2024, 2024
  • [9] COMPLEX MULTIPLICATION USING THE POLYNOMIAL RESIDUE NUMBER SYSTEM
    SKAVANTZOS, A
    STOURAITIS, T
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1989, 130 : 61 - 70
  • [10] GF(2m) Multiplier using Polynomial Residue Number System
    Chu, Junfeng
    Benaissa, Mohammed
    2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2008), VOLS 1-4, 2008, : 1514 - 1517