Symmetric Encryption Algorithms in a Polynomial Residue Number System

被引:0
|
作者
Yakymenko, I. [1 ]
Karpinski, M. [2 ,3 ]
Shevchuk, R. [4 ,5 ]
Kasianchuk, M. [1 ]
机构
[1] West Ukrainian Natl Univ, Dept Cyber Secur, UA-46009 Ternopol, Ukraine
[2] Ternopil Ivan Puluj Natl Tech Univ, Dept Cyber Secur, UA-46001 Ternopol, Ukraine
[3] Univ Natl Educ Commiss, Inst Secur & Comp Sci, PL-30084 Krakow, Poland
[4] West Ukrainian Natl Univ, Dept Comp Sci, UA-46009 Ternopol, Ukraine
[5] Univ Bielsko Biala, Dept Comp Sci & Automat, PL-43309 Bielsko Biala, Poland
关键词
ciphertext; cryptanalysis; cryptoalgorithm; cryptographic strength; residue number system; symmetric cryptosystem; ARCHITECTURES; OPERATIONS;
D O I
10.1155/2024/4894415
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop the theoretical provisions of symmetric cryptographic algorithms based on the polynomial residue number system for the first time. The main feature of the proposed approach is that when reconstructing the polynomial based on the method of undetermined coefficients, multiplication is performed not on the found base numbers but on arbitrarily selected polynomials. The latter, together with pairwise coprime residues of the residue class system, serve as the keys of the cryptographic algorithm. Schemes and examples of the implementation of the developed polynomial symmetric encryption algorithm are presented. The analytical expressions of the cryptographic strength estimation are constructed, and their graphical dependence on the number of modules and polynomial powers is presented. Our studies show that the cryptanalysis of the proposed algorithm requires combinatorial complexity, which leads to an NP-complete problem.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] ON THE POLYNOMIAL RESIDUE NUMBER SYSTEM
    SKAVANTZOS, A
    TAYLOR, FJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (02) : 376 - 382
  • [2] FLOATING-POINT ARITHMETIC ALGORITHMS IN SYMMETRIC RESIDUE NUMBER SYSTEM
    KINOSHITA, E
    KOSAKO, H
    KOJIMA, Y
    IEEE TRANSACTIONS ON COMPUTERS, 1974, C 23 (01) : 9 - 20
  • [3] Symmetric Cryptoalgorithms in the Residue Number System
    Kasianchuk, M. M.
    Yakymenko, I. Z.
    Nykolaychuk, Ya M.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2021, 57 (02) : 329 - 336
  • [4] Symmetric Cryptoalgorithms in the Residue Number System
    M. M. Kasianchuk
    I. Z. Yakymenko
    Ya. M. Nykolaychuk
    Cybernetics and Systems Analysis, 2021, 57 : 329 - 336
  • [5] A NEW INTERPRETATION OF POLYNOMIAL RESIDUE NUMBER SYSTEM
    YANG, MC
    WU, JL
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (08) : 2190 - 2191
  • [6] GENERAL DIVISION IN SYMMETRIC RESIDUE NUMBER SYSTEM
    KINOSHITA, E
    KOSAKO, H
    KOJIMA, Y
    IEEE TRANSACTIONS ON COMPUTERS, 1973, C 22 (02) : 134 - 142
  • [7] COMPLEX MULTIPLICATION USING THE POLYNOMIAL RESIDUE NUMBER SYSTEM
    SKAVANTZOS, A
    STOURAITIS, T
    ADVANCES IN COMPUTING AND CONTROL, 1989, 130 : 61 - 70
  • [8] COMPLEX MULTIPLICATION USING THE POLYNOMIAL RESIDUE NUMBER SYSTEM
    SKAVANTZOS, A
    STOURAITIS, T
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1989, 130 : 61 - 70
  • [9] 2-DIMENSIONAL POLYNOMIAL RESIDUE NUMBER SYSTEM
    YANG, MC
    WU, JL
    SIGNAL PROCESSING, 1994, 40 (2-3) : 295 - 306
  • [10] Low power convolvers using the polynomial residue number system
    Paliouras, V
    Skavantzos, A
    Stouraitis, T
    2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL II, PROCEEDINGS, 2002, : 748 - 751