BROKEN SYMMETRY INSTABILITIES AND SOLUTIONS OF THE EXTENDED HUBBARD-MODEL

被引:0
|
作者
OZAKI, M [1 ]
YAMAMOTO, S [1 ]
机构
[1] KYOTO UNIV, DEPT PHYS, KYOTO 606, JAPAN
关键词
D O I
10.1016/0921-4534(91)90990-G
中图分类号
O59 [应用物理学];
学科分类号
摘要
This report describes instabilities of the normal paramagnetic (RHF) state and broken symmetry solutions of the extended Hubbard model including the nearest neighbour repulsion and the exchange interaction on a planar square lattice. Based on the linear-response theory we derive instability conditions with ordering vector q = Q = (pi, pi) and q = Q(o) = (0,0) which have definite symmetry properties. For q = Q we obtain four non-magnetic states, a charge-density wave (CDW), a charge-current wave (CCW) and two bond-order waves (BOWs) and five magnetic states, an ordinary antiferromagnetism (AF), a spin-current wave (SCW), two axial-spin-bond-order waves (ASBOWs) and a helical-spin-bond-order wave (HSBOW). For q = Q(o) it is shown that there are three states, a BOW, a ferromagnetism (FM) and a spin-bond-order wave (SBOW).
引用
收藏
页码:1727 / 1728
页数:2
相关论文
共 50 条
  • [21] ON THE THEORY OF SUPERCONDUCTIVITY IN THE EXTENDED HUBBARD-MODEL
    WESSELINOWA, JM
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1989, 156 (02): : K129 - K133
  • [22] SUPERCONDUCTING STATES OF AN EXTENDED HUBBARD-MODEL
    COPPERSMITH, SN
    PHYSICAL REVIEW B, 1990, 42 (04): : 2259 - 2267
  • [23] SEARCH FOR SUPERCONDUCTIVITY IN AN EXTENDED HUBBARD-MODEL
    COPPERSMITH, SN
    PHYSICAL REVIEW B, 1989, 39 (13) : 9671 - 9674
  • [24] HOLE PAIRING IN AN EXTENDED HUBBARD-MODEL
    JEFFERSON, JH
    PHYSICA B, 1990, 163 (1-3): : 643 - 646
  • [25] EXTENDED HUBBARD-MODEL IN 2 DIMENSIONS
    LAAD, MS
    GHOSH, DK
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (48) : 9723 - 9732
  • [26] ON THE EXTENDED HUBBARD-MODEL IN ONE DIMENSION
    GLUCK, P
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1982, 114 (01): : K47 - K50
  • [27] Bethe ansatz solutions of the 1D extended Hubbard-model
    Hou, Haiyang
    Sun, Pei
    Qiao, Yi
    Xu, Xiaotian
    Zhang, Xin
    Yang, Tao
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2024, 76 (04)
  • [28] PAIRING INSTABILITIES IN THE 2-DIMENSIONAL HUBBARD-MODEL
    CHUBUKOV, AV
    LU, JP
    PHYSICAL REVIEW B, 1992, 46 (17): : 11163 - 11166
  • [29] ON CYCLIC REGION SOLUTIONS OF THE HUBBARD-MODEL
    NEWMAN, DJ
    CHAN, KS
    NG, B
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1984, 45 (06) : 643 - 649
  • [30] EXTENDED HUBBARD-MODEL AT WEAK-COUPLING
    VANDONGEN, PGJ
    PHYSICAL REVIEW B, 1994, 50 (19): : 14016 - 14031