Homogenization models for two-dimensional grid structures

被引:0
|
作者
Banks, HT
Cioranescu, D
Rebnord, DA
机构
[1] N CAROLINA STATE UNIV,CTR RES SCI COMPUTAT,RALEIGH,NC 27695
[2] UNIV PARIS 06,ANAL NUMER LAB,F-75252 PARIS 05,FRANCE
[3] SYRACUSE UNIV,DEPT MATH,SYRACUSE,NY 13224
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Love-Kirchhoff perforated plate or grid with Kelvin-Voigt damping is considered. The grid contains periodic rectangular holes. Detailed mathematical arguments for the derivation of an approximate homogenized model on a domain without perforations are given.
引用
收藏
页码:107 / 130
页数:24
相关论文
共 50 条
  • [21] Homogenization of two-dimensional clusters of rigid rods in air
    Torrent, Daniel
    Hakansson, Andreas
    Cervera, Francisco
    Sanchez-Dehesa, Jose
    PHYSICAL REVIEW LETTERS, 2006, 96 (20)
  • [22] Numerical homogenization of nonlinear viscoplastic two-dimensional polycrystals
    Legoll, Frédéric
    Computational and Applied Mathematics, 2004, 23 (2-3) : 309 - 325
  • [23] Homogenization of two-dimensional phononic crystals at low frequencies
    Ni, Q
    Cheng, JC
    CHINESE PHYSICS LETTERS, 2005, 22 (09) : 2305 - 2308
  • [24] Homogenization of two-dimensional anisotropic dissipative photonic crystal
    Carbonell, J.
    Cervera, F.
    Sanchez-Dehesa, J.
    Arriaga, J.
    Gumen, L.
    Krokhin, A.
    APPLIED PHYSICS LETTERS, 2010, 97 (23)
  • [25] Mathematical models of two-dimensional diffraction problems on periodic structures.
    Dushkin, VD
    MMET'96 - VITH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, PROCEEDINGS, 1996, : 483 - 486
  • [26] Phase Transitions in Two-Dimensional Structures Described by Impurity Potts Models
    A. K. Murtazaev
    A. B. Babaev
    G. Ya. Ataeva
    A. A. Murtazaeva
    Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021, 15 : 1076 - 1079
  • [27] Phase Transitions in Two-Dimensional Structures Described by Impurity Potts Models
    Murtazaev, A. K.
    Babaev, A. B.
    Ataeva, G. Ya.
    Murtazaeva, A. A.
    JOURNAL OF SURFACE INVESTIGATION, 2021, 15 (05): : 1076 - 1079
  • [28] TWO-DIMENSIONAL LORENTZIAN MODELS
    Malyshev, V.
    Yambartsev, A.
    Zamyatin, A.
    MOSCOW MATHEMATICAL JOURNAL, 2001, 1 (03) : 439 - 456
  • [29] A STUDY OF TWO-DIMENSIONAL MODELS
    BANERJEE, R
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1984, 25 (03): : 251 - 258
  • [30] Two-dimensional growth models
    Williams, HT
    Goodwin, L
    Desjardins, SG
    Billings, FT
    PHYSICS LETTERS A, 1998, 250 (1-3) : 105 - 110