Neurotoxins have evolved as molecules targeted specifically against molecules with an important function in the nervous system. Because of their selectivity they have been used as probes for detecting and characterizing key proteins of the nerve cell. Ion channels involved in the propagation of the action potential, proteins of presynaptic neurotransmitter exocytosis, and most importantly, neurotransmitter receptors have been and are presently being analyzed, in some cases already at atomic level by a combination of the tools of neurotoxins, molecular biology, and patch clamp electrophysiology. In this review a selection of these toxins is presented, together with their targets in the nervous system. Special emphasis is given to the recent breakthroughs in our understanding of the mechanism of action of tetanus and botulinum toxins and to the neurotoxins ranging from the plant alkaloid strychnine to the peptide toxins from poisonous snakes, which were fundamental in elucidating ligand‐gated ion channels like the glycine and nicotinic acetylcholine receptors. Copyright © 1995 by VCH Verlagsgesellschaft mbH, Germany