THE DOMINATED ERGODIC ESTIMATE FOR MEAN BOUNDED, INVERTIBLE, POSITIVE OPERATORS

被引:29
|
作者
MARTINREYES, FJ
DELATORRE, A
机构
关键词
D O I
10.2307/2047463
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:69 / 75
页数:7
相关论文
共 50 条
  • [11] The Hadamard Product and the Karcher Mean of Positive Invertible Operators
    Seo, Yuki
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2017, 53 (01) : 65 - 78
  • [12] MEAN ERGODIC THEOREMS FOR POSITIVE OPERATORS IN LEBESGUE SPACE
    SATO, R
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1975, 27 (02) : 207 - 212
  • [13] On the Lawson–Lim means and Karcher mean for positive invertible operators
    Wenshi Liao
    Pujun Long
    Zemin Ren
    Junliang Wu
    Journal of Inequalities and Applications, 2018
  • [14] ALMOST EVERYWHERE CONVERGENCE OF GENERALIZED ERGODIC TRANSFORMS FOR INVERTIBLE POWER-BOUNDED OPERATORS IN LP
    Cuny, Christophe
    COLLOQUIUM MATHEMATICUM, 2011, 124 (01) : 61 - 77
  • [15] On Mean Ergodic Operators
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    VECTOR MEASURES, INTEGRATION AND RELATED TOPICS, 2010, 201 : 1 - +
  • [16] MEAN ERGODIC THEOREMS FOR SEMIGROUPS OF POSITIVE LINEAR-OPERATORS
    HIAI, F
    SATO, R
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1977, 29 (01) : 123 - 134
  • [17] On the Lawson-Lim means and Karcher mean for positive invertible operators
    Liao, Wenshi
    Long, Pujun
    Ren, Zemin
    Wu, Junliang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [18] INVERTIBLE SEQUENCES OF BOUNDED LINEAR OPERATORS
    Zang Lili
    Sun Wenchang
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (05) : 1939 - 1944
  • [19] INVERTIBLE SEQUENCES OF BOUNDED LINEAR OPERATORS
    臧丽丽
    孙文昌
    Acta Mathematica Scientia, 2011, 31 (05) : 1939 - 1944
  • [20] On mean-bounded operators and an ergodic Littlewood-Paley Theorem.
    Berkson, E
    Gillespie, TA
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (01): : 59 - 62