SOME METRICS ON CLASSICAL KNOTS

被引:70
|
作者
MURAKAMI, H
机构
关键词
D O I
10.1007/BF01455526
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:35 / 45
页数:11
相关论文
共 50 条
  • [21] Virtual and welded periods of classical knots
    Boden, Hans U.
    Nicas, Andrew J.
    BREADTH IN CONTEMPORARY TOPOLOGY, 2019, 102 : 29 - 42
  • [22] KNOTS AND CLASSICAL 3-GEOMETRIES
    TOH, TC
    ANDERSON, MR
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (01) : 596 - 604
  • [23] The equivalence on classical metrics
    Wei-ping Yin
    An Wang
    Science in China Series A: Mathematics, 2007, 50 : 183 - 200
  • [24] The equivalence on classical metrics
    Wei-ping Yin & An WANG School of Mathematical Sciences
    Science in China(Series A:Mathematics), 2007, (02) : 183 - 200
  • [25] The equivalence on classical metrics
    Yin, Wei-ping
    Wang, An
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (02): : 183 - 200
  • [26] TWIN GROUPS OF VIRTUAL 2-BRIDGE KNOTS AND ALMOST CLASSICAL KNOTS
    Nakamura, Takuji
    Nakanishi, Yasutaka
    Satoh, Shin
    Tomiyama, Yumi
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (10)
  • [27] Legendrian knots and links classified by classical invariants
    Ding, Fan
    Geiges, Hansjoerg
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2007, 9 (02) : 135 - 162
  • [28] A note on non-classical virtual knots
    Kishino, T
    Satoh, S
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2004, 13 (07) : 845 - 856
  • [29] CHARACTER VARIETIES OF EVEN CLASSICAL PRETZEL KNOTS
    Chen, Haimiao
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2019, 56 (04) : 510 - 522
  • [30] Virtual knot groups and almost classical knots
    Boden, Hans U.
    Gaudreau, Robin
    Harper, Eric
    Nicas, Andrew J.
    White, Lindsay
    FUNDAMENTA MATHEMATICAE, 2017, 238 (02) : 101 - 142