RELATIVISTIC QUANTUM STATISTICS IN THE WIGNER FORMALISM AND ITS APPLICATIONS TO THE TODA OSCILLATOR

被引:2
|
作者
HAMO, A
VOJTA, G
ZYLKA, C
机构
[1] Fachbereich Physik, Universität Leipzig, Leipzig, D-07010
来源
EUROPHYSICS LETTERS | 1991年 / 15卷 / 08期
关键词
QUANTUM STATISTICAL MECHANICS; THERMODYNAMIC FUNCTIONS AND EQUATIONS OF STATES; OTHER TOPICS IN RELATIVITY AND GRAVITATION;
D O I
10.1209/0295-5075/15/8/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Wigner-Kirkwood series expansion of equilibrium quantum statistics in the phase space formalism is generalized to include relativistic systems. For partition functions and all thermodynamic functions the series yields quantum corrections in terms of powers of H2BAR including systematic relativistic corrections given by modified Hankel functions K(y)(mc2/kT). An application to the symmetric relativistic quantum Toda oscillator is sketched.
引用
收藏
页码:809 / 813
页数:5
相关论文
共 50 条
  • [21] Solutions of the compatibility conditions for a Wigner quantum oscillator
    Stoilova, NI
    Van der Jeugt, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (44): : 9681 - 9687
  • [22] Quantum forced oscillator via Wigner transform
    Sacchetti, Andrea
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2023, 16 (01): : 103 - 134
  • [23] SMOOTHED WIGNER FUNCTION OF A QUANTUM DAMPED OSCILLATOR
    AKHUNDOVA, EA
    MUKHTAROV, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (18): : 5287 - 5289
  • [24] The Brillouin-Wigner expansion in a relativistic two-body formalism
    Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent'eva 13/3, Novosibirsk 630090, Russia
    不详
    Laser Phys., 2008, 1 (22-26):
  • [25] Quantum forced oscillator via Wigner transform
    Andrea Sacchetti
    Bollettino dell'Unione Matematica Italiana, 2023, 16 : 103 - 134
  • [26] RELATIVISTIC WIGNER OPERATOR AND ITS DISTRIBUTION
    JANNUSSIS, A
    STREKLAS, A
    SOURLAS, D
    VLACHOS, K
    LETTERE AL NUOVO CIMENTO, 1977, 18 (11): : 349 - 351
  • [27] RELATIVISTIC PARAMAGNETISM - QUANTUM STATISTICS
    DELSANTE, AE
    FRANKEL, NE
    PHYSICAL REVIEW D, 1979, 20 (08): : 1795 - 1806
  • [28] Q operators for the simple quantum relativistic Toda chain
    Pronko, GP
    Sergeev, SM
    PHYSICS OF ATOMIC NUCLEI, 2002, 65 (06) : 1095 - 1099
  • [29] Q operators for the simple quantum relativistic Toda Chain
    G. P. Pronko
    S. M. Sergeev
    Physics of Atomic Nuclei, 2002, 65 : 1095 - 1099
  • [30] Unitary representations of the quantum Lorentz group and quantum relativistic Toda chain
    Olshanetsky, MA
    Rogov, VBK
    THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 130 (03) : 299 - 322