CONVERGENT STEPSIZES FOR CONSTRAINED OPTIMIZATION ALGORITHMS

被引:4
|
作者
RUSTEM, B
机构
关键词
D O I
10.1007/BF00939251
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
引用
收藏
页码:135 / 160
页数:26
相关论文
共 50 条
  • [31] Globally convergent algorithms for solving unconstrained optimization problems
    Taheri, Sona
    Mammadov, Musa
    Seifollahi, Sattar
    OPTIMIZATION, 2015, 64 (02) : 249 - 263
  • [32] Convergent incremental optimization transfer algorithms: Application to tomography
    Ahn, S
    Fessler, JA
    Blatt, D
    Hero, AO
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (03) : 283 - 296
  • [33] A globally convergent regularized interior point method for constrained optimization
    Qiu, Songqiang
    OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (04): : 1471 - 1506
  • [34] A globally convergent linearly constrained Lagrangian method for nonlinear optimization
    Friedlander, MP
    Saunders, MA
    SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (03) : 863 - 897
  • [35] A globally and superlinearly convergent SQP algorithm for nonlinear constrained optimization
    Qi, LQ
    Yang, YF
    JOURNAL OF GLOBAL OPTIMIZATION, 2001, 21 (02) : 157 - 184
  • [36] A convergent decomposition method for box-constrained optimization problems
    Andrea Cassioli
    Marco Sciandrone
    Optimization Letters, 2009, 3 : 397 - 409
  • [37] A Globally Convergent Parallel SSLE Algorithm for Inequality Constrained Optimization
    Luol, Zhijun
    Wang, Lirong
    JOURNAL OF MATHEMATICS, 2014, 2014
  • [38] A convergent decomposition method for box-constrained optimization problems
    Cassioli, Andrea
    Sciandrone, Marco
    OPTIMIZATION LETTERS, 2009, 3 (03) : 397 - 409
  • [39] A Globally and Superlinearly Convergent SQP Algorithm for Nonlinear Constrained Optimization
    Liqun Qi
    Yu-Fei Yang
    Journal of Global Optimization, 2001, 21 : 157 - 184
  • [40] Estimation distribution algorithms on constrained optimization problems
    Gao, Shujun
    de Silva, Clarence W.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 323 - 345