TIME EVOLUTION OF THE WIGNER FUNCTION

被引:16
|
作者
SOTOEGUIBAR, F [1 ]
CLAVERIE, P [1 ]
机构
[1] INST BIOL PHYS CHIM, CHIM QUANT LAB, F-75005 PARIS, FRANCE
关键词
D O I
10.1063/1.525836
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1104 / 1109
页数:6
相关论文
共 50 条
  • [31] The Wigner Function as Distribution Function
    M. Revzen
    Foundations of Physics, 2006, 36 : 546 - 562
  • [32] Canonical transformations for time evolution and their representation in Wigner distribution phase space
    Moshinsky, M
    Sharma, A
    ANNALS OF PHYSICS, 2000, 282 (01) : 138 - 153
  • [33] The Wigner function as distribution function
    Revzen, M.
    FOUNDATIONS OF PHYSICS, 2006, 36 (04) : 546 - 562
  • [34] Wigner function evolution of quantum states in the presence of self-Kerr interaction
    Stobinska, Magdalena
    Milburn, G. J.
    Wodkiewicz, Krzysztof
    PHYSICAL REVIEW A, 2008, 78 (01):
  • [35] THE WIGNER FUNCTION OF 2-MODE SQUEEZED STATES - FREE AND DISSIPATIVE EVOLUTION
    EKERT, AK
    KNIGHT, PL
    COHERENCE AND QUANTUM OPTICS VI, 1989, : 255 - 259
  • [36] Time-Frequency Emotional Assessment of Speech using the Wigner Function
    Materdey, Thomas
    Materdey, Albert
    Materdey, Alexander
    Truong, Alice
    Materdey, Tomas
    2018 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRONICS & COMMUNICATIONS ENGINEERING (ICCECE), 2018, : 128 - 133
  • [37] Normally-Ordered Time Evolution Operator for Mass-Varying Harmonic Oscillator and Wigner Function of Squeezed Number State
    Tang Xu-Bing
    Xu Xue-Fen
    Fan Hong-Yi
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 54 (01) : 67 - 72
  • [38] Normally-Ordered Time Evolution Operator for Mass-Varying Harmonic Oscillator and Wigner Function of Squeezed Number State
    唐绪兵
    许雪芬
    范洪义
    CommunicationsinTheoreticalPhysics, 2010, 54 (07) : 67 - 72
  • [39] Wigner distribution function expression for the tunnelling time in quantum resonant structures
    D. Dragoman
    Optical and Quantum Electronics, 1997, 29 : 79 - 82
  • [40] SUPER WIGNER FUNCTION
    ABE, S
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (05) : 1690 - 1694