A study on the effect of electrical stimulation as a user stimuli for motor imagery classification in Brain-Machine Interface

被引:0
|
作者
Bhattacharyya, Saugat [1 ]
Clerc, Maureen [2 ]
Hayashibe, Mitsuhiro [1 ]
机构
[1] Univ Montpellier, INRIA, LIRMM, BCI LIFT Project,CAMIN Team, F-34059 Montpellier, France
[2] Inria Sophia Antipolis, Athena Team, BCI LIFT Project, Sophia Antipolis, France
关键词
Electrical Stimulation; Brain machine interfacing; Motor Imagery; Electroencephalography;
D O I
暂无
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Functional Electrical Stimulation (FES) provides a neuroprosthetic interface to non-recovered muscle groups by stimulating the affected region of the human body. FES in combination with Brain-machine interfacing (BMI) has a wide scope in rehabilitation because this system directly links the cerebral motor intention of the users with its corresponding peripheral muscle activations. In this paper, we examine the effect of FES on the electroencephalography (EEG) during motor imagery (left- and right-hand movement) training of the users. Results suggest a significant improvement in the classification accuracy when the subject was induced with FES stimuli as compared to the standard visual one.
引用
收藏
页码:165 / 168
页数:4
相关论文
共 50 条
  • [41] The Ensemble Machine Learning-Based Classification of Motor Imagery Tasks in Brain-Computer Interface
    Subasi, Abdulhamit
    Qaisar, Saeed Mian
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [42] A perspective on translating genomic discoveries into targets for brain-machine interface and deep brain stimulation devices
    Valentim, Wander L.
    Tylee, Daniel S.
    Polimanti, Renato
    WIRES MECHANISMS OF DISEASE, 2024, 16 (02):
  • [43] The study of excitability of motor cortex with motor imagery and simultaneous electrical stimulation
    Iakovlev, L.
    Syrov, N.
    Morozova, E.
    Lee, J.
    Kaplan, A.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S398 - S399
  • [44] Wireless Brain-Machine Interface Using EEG and EOG: Brain Wave Classification and Robot Control
    Oh, Sechang
    Kumar, Prashanth S.
    Kwon, Hyeokjun
    Varadan, Vijay K.
    NANOSENSORS, BIOSENSORS, AND INFO-TECH SENSORS AND SYSTEMS 2012, 2012, 8344
  • [45] Study on brain computer interface based on motor imagery
    Zhou, Yu
    Zhao, Jinhui
    Zhou, Xiaoming
    International Journal of Signal Processing, Image Processing and Pattern Recognition, 2013, 6 (04) : 201 - 210
  • [46] Neuromuscular electrical stimulation induced brain patterns to decode motor imagery
    Vidaurre, C.
    Pascual, J.
    Ramos-Murguialday, A.
    Lorenz, R.
    Blankertz, B.
    Birbaumer, N.
    Mueller, K. -R.
    CLINICAL NEUROPHYSIOLOGY, 2013, 124 (09) : 1824 - 1834
  • [47] Testing Extreme Learning Machine in Motor Imagery Brain Computer Interface
    Martinez-Albaladejo, Francisco J.
    Bueno-Crespo, Andres
    Rodriguez-Bermudez, German
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (05) : 3103 - 3111
  • [48] CS-Net: An End-to-end Network for Motor Imagery Brain-Machine Interface with Adaptive Channel Selection and Compressed Sensing
    Lu, Jie
    Yu, Guanghan
    Qian, Liyu
    Cao, Jiacheng
    Zheng, Lirong
    Zou, Zhuo
    2024 IEEE 6TH INTERNATIONAL CONFERENCE ON AI CIRCUITS AND SYSTEMS, AICAS 2024, 2024, : 582 - 586
  • [49] Classification of Motor Imagery Electrocorticogram Signals for Brain-Computer Interface
    Zheng, Wenfeng
    Xu, Fangzhou
    Shu, Minglei
    Zhang, Yingchun
    Yuan, Qi
    Lian, Jian
    Zheng, Yuanjie
    2019 9TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2019, : 530 - 533
  • [50] Decoding motor plans using a closed-loop ultrasonic brain-machine interface
    Griggs, Whitney S.
    Norman, Sumner L.
    Deffieux, Thomas
    Segura, Florian
    Osmanski, Bruno-Felix
    Chau, Geeling
    Christopoulos, Vasileios
    Liu, Charles
    Tanter, Mickael
    Shapiro, Mikhail G.
    Andersen, Richard A.
    NATURE NEUROSCIENCE, 2024, 27 (01) : 196 - 207