Strongly Regular Gamma-Near Rings

被引:0
|
作者
Selvaraj, C. [1 ]
George, R. [2 ]
机构
[1] Periyar Univ, Dept Math, Salem 636011, Tamil Nadu, India
[2] TDMNS Coll, Dept Math, T Kallikulam 627113, Tamil Nadu, India
关键词
Strongly regular; Weakly regular; 2-primal;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the following result: (i) If N is a distributive left weakly semiprime Gamma-near ring with a strong left unity, then N is regular if and only if its left operator near-ring L is regular and (ii) If N is a distributive regular Gamma-near ring with a strong left unity and a right unity, then N is 2 primal if and only if L is 2 primal.
引用
收藏
页码:329 / 344
页数:16
相关论文
共 50 条
  • [31] On Left SF-Rings and Strongly Regular Rings
    Subedi, Tikaram
    Buhphang, Ardeline Mary
    KYUNGPOOK MATHEMATICAL JOURNAL, 2016, 56 (03): : 861 - 866
  • [32] DIRECT SUM OF STRONGLY REGULAR RINGS AND ZERO RINGS
    LIGH, S
    UTUMI, Y
    PROCEEDINGS OF THE JAPAN ACADEMY, 1974, 50 (08): : 589 - 592
  • [33] ON STRONGLY REGULAR RINGS AND GENERALIZATIONS OF V-RINGS
    Subedi, Tikaram
    Buhphang, Ardeline Mary
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2013, 14 : 10 - 18
  • [34] STRONGLY REGULAR RINGS .2.
    CHIBA, K
    TOMINAGA, H
    PROCEEDINGS OF THE JAPAN ACADEMY, 1974, 50 (07): : 444 - 445
  • [35] EXISTENTIALLY COMPLETE STRONGLY REGULAR RINGS
    WEISPFENNING, V
    JOURNAL OF SYMBOLIC LOGIC, 1979, 44 (03) : 466 - 467
  • [36] A GENERALIZATION OF STRONGLY REGULAR-RINGS
    GUPTA, V
    ACTA MATHEMATICA HUNGARICA, 1984, 43 (1-2) : 57 - 61
  • [37] FURTHER CHARACTERIZATION OF STRONGLY REGULAR RINGS
    SZASZ, FA
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1974, 22 (03): : 243 - 245
  • [38] STRONGLY PI-REGULAR RINGS
    DISCHINGER, F
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (08): : 571 - 573
  • [39] EP elements and *-Strongly Regular Rings
    Yao, Hua
    Wei, Junchao
    FILOMAT, 2018, 32 (01) : 117 - 125
  • [40] 3 QUESTIONS ON STRONGLY PI-REGULAR RINGS AND REGULAR-RINGS
    XUE, WM
    COMMUNICATIONS IN ALGEBRA, 1993, 21 (02) : 699 - 704