2-DIMENSIONAL ADVECTION-DIFFUSION EQUATIONS WITH CONSTANT LIMITING SOLUTIONS

被引:0
|
作者
HOWES, FA
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior of solutions of two-component systems of equations in two dimensions that are related to the steady streamfunction-vorticity equations for large values of the Reynolds number. In particular, we determine the value of the constant limiting "vorticity" under certain circumstances.
引用
收藏
页码:245 / 265
页数:21
相关论文
共 50 条
  • [21] Moments for Tempered Fractional Advection-Diffusion Equations
    Yong Zhang
    Journal of Statistical Physics, 2010, 139 : 915 - 939
  • [22] Multidomain finite elements for advection-diffusion equations
    Trotta, RL
    APPLIED NUMERICAL MATHEMATICS, 1996, 21 (01) : 91 - 118
  • [23] Computational technique for heat and advection-diffusion equations
    Jena, Saumya Ranjan
    Gebremedhin, Guesh Simretab
    SOFT COMPUTING, 2021, 25 (16) : 11139 - 11150
  • [24] Multidomain finite elements for advection-diffusion equations
    Universita degli Studi di Trento, Trento, Italy
    Appl Numer Math, 1 (91-118):
  • [25] Solutions of fuzzy advection-diffusion and heat equations by natural adomian decomposition method
    Noor Jamal
    Muhammad Sarwar
    Parveen Agarwal
    Nabil Mlaiki
    Ahmad Aloqaily
    Scientific Reports, 13
  • [26] Analytical solutions of the space-time fractional Telegraph and advection-diffusion equations
    Tawfik, Ashraf M.
    Fichtner, Horst
    Schlickeiser, Reinhard
    Elhanbaly, A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 491 : 810 - 819
  • [27] Global existence results for solutions of general conservative advection-diffusion equations in R
    Guidolin, P. L.
    Schutz, L.
    Ziebell, J. S.
    Zingano, J. P.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (01)
  • [28] Biological modeling with nonlocal advection-diffusion equations
    Painter, Kevin J.
    Hillen, Thomas
    Potts, Jonathan R.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2024, 34 (01): : 57 - 107
  • [29] Moments for Tempered Fractional Advection-Diffusion Equations
    Zhang, Yong
    JOURNAL OF STATISTICAL PHYSICS, 2010, 139 (05) : 915 - 939
  • [30] A Comparison of Closures for Stochastic Advection-Diffusion Equations
    Jarman, K. D.
    Tartakovsky, A. M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2013, 1 (01): : 319 - 347