2-DIMENSIONAL ADVECTION-DIFFUSION EQUATIONS WITH CONSTANT LIMITING SOLUTIONS

被引:0
|
作者
HOWES, FA
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior of solutions of two-component systems of equations in two dimensions that are related to the steady streamfunction-vorticity equations for large values of the Reynolds number. In particular, we determine the value of the constant limiting "vorticity" under certain circumstances.
引用
收藏
页码:245 / 265
页数:21
相关论文
共 50 条
  • [1] A 2-DIMENSIONAL ADVECTION-DIFFUSION OCEAN MODEL WITH ANISOTROPIC DIFFUSION
    LIN, CA
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1990, 54 (3-4): : 229 - 255
  • [2] Lie group solutions of advection-diffusion equations
    Sun, Yubiao
    Jayaraman, Amitesh
    Chirikjian, Gregory S.
    PHYSICS OF FLUIDS, 2021, 33 (04)
  • [3] Traveling wave solutions of advection-diffusion equations with nonlinear diffusion
    Monsaingeon, L.
    Novikov, A.
    Roquejoffre, J. -M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (04): : 705 - 735
  • [4] Analytical solutions for advection and advection-diffusion equations with spatially variable coefficients
    Zoppou, C
    Knight, JH
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1997, 123 (02): : 144 - 148
  • [5] Solutions of the advection-diffusion equation
    Tirabassi, T
    AIR POLLUTION V, 1997, : 197 - 206
  • [6] Stochastic solutions for the two-dimensional advection-diffusion equation
    Wang, XL
    Xiu, DB
    Karniadakis, GE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (02): : 578 - 590
  • [7] Numerical solutions and analysis of diffusion for new generalized fractional advection-diffusion equations
    Xu, Yufeng
    Agrawal, Om P.
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1178 - 1193
  • [8] Accurate discretization of advection-diffusion equations
    Grima, R.
    Newman, T.J.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (3 2): : 036703 - 1
  • [9] Nonlocal Nonlinear Advection-Diffusion Equations
    Constantin, Peter
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 281 - 292
  • [10] Nonlocal nonlinear advection-diffusion equations
    Peter Constantin
    Chinese Annals of Mathematics, Series B, 2017, 38 : 281 - 292