A GENERALIZED WHITE NOISE SPACE APPROACH TO STOCHASTIC INTEGRATION FOR A CLASS OF GAUSSIAN STATIONARY INCREMENT PROCESSES

被引:3
|
作者
Alpay, Daniel [1 ]
Kipnis, Alon [2 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, POB 653, IL-84105 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Dept Elect Engn, IL-84105 Beer Sheva, Israel
关键词
stochastic integral; white noise space; fractional Brownian motion;
D O I
10.7494/OpMath.2013.33.3.395
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a Gaussian stationary increment processes, we show that a Skorokhod-Hitsuda stochastic integral with respect to this process, which obeys the Wick-Ito calculus rules, can be naturally defined using ideas taken from Hida's white noise space theory. We use the Bochner-Minlos theorem to associate a probability space to the process, and define the counterpart of the S-transform in this space. We then use this transform to define the stochastic integral and prove an associated Ito formula.
引用
收藏
页码:395 / 417
页数:23
相关论文
共 50 条
  • [41] Stochastic resonance in a threshold system for generalized Gaussian noise
    Wang, You-Guo
    Nanjing Youdian Daxue Xuebao (Ziran Kexue Ban)/Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2006, 26 (06): : 40 - 42
  • [42] Time fractional and space nonlocal stochastic nonlinear Schrodinger equation driven by Gaussian white noise
    Liang, Jiarui
    Shen, Tianlong
    Qian, Xu
    Song, Songhe
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (02) : 123 - 136
  • [43] A white noise approach to a class of non-linear stochastic heat equations
    Benth, FE
    Deck, T
    Potthoff, J
    JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 146 (02) : 382 - 415
  • [44] GENERALIZED STATIONARY STOCHASTIC-PROCESSES ON GROUPS RXG
    SCHMIDT, F
    MATHEMATISCHE NACHRICHTEN, 1975, 68 : 29 - 48
  • [45] A new class of white noise generalized functions
    Cochran, WG
    Kuo, HH
    Sengupta, A
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1998, 1 (01) : 43 - 67
  • [46] A white noise approach to stochastic differential equations driven by Wiener and Poisson processes
    Holden, H
    Oksendal, B
    NONLINEAR THEORY OF GENERALIZED FUNCTIONS, 1999, 401 : 293 - 313
  • [47] A combinatorial view of stochastic processes: White noise
    Diaz-Ruelas, Alvaro
    CHAOS, 2022, 32 (12)
  • [48] Stochastic differential equations in white noise space
    Kuo, HH
    Xiong, J
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1998, 1 (04) : 611 - 632
  • [49] STOCHASTIC WIENER FILTER IN THE WHITE NOISE SPACE
    Alpay, Daniel
    Pinhas, Ariel
    OPUSCULA MATHEMATICA, 2020, 40 (03) : 323 - 339
  • [50] EXISTENCE OF A CLASS OF STATIONARY QUANTUM STOCHASTIC-PROCESSES
    LEWIS, JT
    THOMAS, LC
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1975, 22 (03): : 241 - 248