A GENERALIZED WHITE NOISE SPACE APPROACH TO STOCHASTIC INTEGRATION FOR A CLASS OF GAUSSIAN STATIONARY INCREMENT PROCESSES

被引:3
|
作者
Alpay, Daniel [1 ]
Kipnis, Alon [2 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, POB 653, IL-84105 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Dept Elect Engn, IL-84105 Beer Sheva, Israel
关键词
stochastic integral; white noise space; fractional Brownian motion;
D O I
10.7494/OpMath.2013.33.3.395
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a Gaussian stationary increment processes, we show that a Skorokhod-Hitsuda stochastic integral with respect to this process, which obeys the Wick-Ito calculus rules, can be naturally defined using ideas taken from Hida's white noise space theory. We use the Bochner-Minlos theorem to associate a probability space to the process, and define the counterpart of the S-transform in this space. We then use this transform to define the stochastic integral and prove an associated Ito formula.
引用
收藏
页码:395 / 417
页数:23
相关论文
共 50 条