INTRINSIC STATISTICAL SOLUTIONS OF BURGERS-EQUATION AND LEVY PROCESSES

被引:0
|
作者
CARRARO, L [1 ]
DUCHON, J [1 ]
机构
[1] UNIV LYON 1, CNRS, CMAI, F-69622 VILLEURBANNE, FRANCE
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study here solutions of inviscid Burgers equation with a stochastic initial value. We define the notion of intrinsic statistical solution of this evolution equation and show that a family (X (t); t greater than or equal to 0) of homogeneous Levy processes is an intrinsic statistical solution of Burgers Burgers equation if and only if the exponent functions psi (t, w) satisfy: partial derivative psi/partial derivative t = i psi, (partial derivative psi/partial derivative w).
引用
收藏
页码:855 / 858
页数:4
相关论文
共 50 条