Adaptive Kernel Quantile Regression for Anomaly Detection

被引:0
|
作者
Moriguchi, Hiroyuki [1 ]
Takeuchi, Ichiro [2 ]
Karasuyama, Masayuki [2 ]
Horikawa, Shin-ichi [1 ]
Ohta, Yoshikatsu [1 ]
Kodama, Tetsuji [1 ]
Naruse, Hiroshi [1 ]
机构
[1] Mie Univ, 1577 Kurimamachiya Cho, Tsu, Mie 5148507, Japan
[2] Nagoya Inst Technol, Showa Ku, Nagoya, Aichi 4668555, Japan
关键词
kernel machine; quantile regression and adaptive system;
D O I
10.20965/jaciii.2009.p0230
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study a problem of anomaly detection from time series-data. We use kernel quantile regression (KQR) to predict the extreme (such as 0.01 or 0.99) quantiles of the future time-series data distribution. It enables us to tell whether the probability of observing a certain time-series sequence is larger than, say, 1 percent or not. In this paper, we develop an efficient update algorithm of KQR in order to adapt the KQR in on-line manner. We propose a new algorithm that allows us to compute the optimal solution of the KQR when a new training pattern is inserted or deleted. We demonstrate the effectiveness of our methodology through numerical experiment using real-world time-series data.
引用
收藏
页码:230 / 236
页数:7
相关论文
共 50 条
  • [21] Adaptive local linear quantile regression
    Su, Yu-nan
    Tian, Mao-zai
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (03): : 509 - 516
  • [22] Fast quantile regression in reproducing kernel Hilbert space
    Zheng, Songfeng
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 568 - 588
  • [23] Improved double kernel local linear quantile regression
    Jones, M. C.
    Yu, Keming
    STATISTICAL MODELLING, 2007, 7 (04) : 377 - 389
  • [24] Penalized kernel quantile regression for varying coefficient models
    Lee, Eun Ryung
    Cho, Jinwoo
    Park, Seyoung
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 217 : 8 - 23
  • [25] Fast quantile regression in reproducing kernel Hilbert space
    Songfeng Zheng
    Journal of the Korean Statistical Society, 2022, 51 : 568 - 588
  • [26] Value at risk estimation by quantile regression and kernel estimator
    Huang A.Y.
    Review of Quantitative Finance and Accounting, 2013, 41 (2) : 225 - 251
  • [27] Divide and conquer kernel quantile regression for massive dataset
    Bang, Sungwan
    Kim, Jaeoh
    KOREAN JOURNAL OF APPLIED STATISTICS, 2020, 33 (05) : 569 - 578
  • [28] Adaptive metric kernel regression
    Goutte, C
    Larsen, J
    NEURAL NETWORKS FOR SIGNAL PROCESSING VIII, 1998, : 184 - 193
  • [29] Adaptive metric kernel regression
    Goutte, C
    Larsen, J
    JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2000, 26 (1-2): : 155 - 167
  • [30] Adaptive Metric Kernel Regression
    Cyril Goutte
    Jan Larsen
    Journal of VLSI signal processing systems for signal, image and video technology, 2000, 26 : 155 - 167