THEOREM FOR FUNCTIONAL-DERIVATIVES IN DENSITY-FUNCTIONAL THEORY

被引:2
|
作者
HUI, OY
LEVY, M
机构
[1] TULANE UNIV, DEPT CHEM, NEW ORLEANS, LA 70118 USA
[2] TULANE UNIV, QUANTUM THEORY GRP, NEW ORLEANS, LA 70118 USA
来源
PHYSICAL REVIEW A | 1991年 / 44卷 / 01期
关键词
D O I
10.1103/PhysRevA.44.54
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Consider a functional Q[n] that scales homogeneously, Q[n-lambda] = lambda(k)Q[n], where n-lambda-(r) = lambda-3n(lambda-r). It is already known that Q[n] is related to its functional derivative, q([n];r) = delta-Q[n]/delta-n, by kQ[n] = - integral d3r n(r)r.NABLA q([n];r). We here prove that q([n];r) is related to its functional derivative by kq([n];r) = - integral d3r'n(r')r'.NABLA'{delta-q([n];r)/delta-n(r')}-r.NABLA q([n];r) and that there also exists a homogeneouslike scaling relation for q([n];r): q([n-lambda];r) = lambda-(k)q([n];lambda-r). In addition, delta-q([n];r)/delta-n(r') = delta-q([n];r')/delta-n(r) because q([n];r) is the functional derivative of Q[n]. Based upon these exact properties of q([n];r) it is proved that if a trial potential qBAR([n];r) satisfies kQ[n] = - integral d3r n(r)r.NABLA qBAR([n];r) and delta-qBAR([n];r)/delta-n(r') = delta-qBAR([n];r')/delta-n(r), then kq([n];r) = - integral d3r'n(r')r'.NABLA'{delta-qBAR([n];r)/delta-n(r')}-r.NABLA qBAR([n];r. If qBAR([n];r) further satisfies qBAR([n-lambda];r) = lambda-(k)q([n];lambda-r), we prove that q([n];r) = qBAR([n];r), which means that qBAR is exact. Application of the theorem to density-functional theory is discussed.
引用
收藏
页码:54 / 58
页数:5
相关论文
共 50 条
  • [21] Combining density-functional theory and density-matrix-functional theory
    Rohr, Daniel R.
    Toulouse, Julien
    Pernal, Katarzyna
    PHYSICAL REVIEW A, 2010, 82 (05):
  • [22] Combining density-functional theory and density-matrix-functional theory
    Rohr, Daniel R.
    Toulouse, Julien
    Pernal, Katarzyna
    Physical Review A - Atomic, Molecular, and Optical Physics, 2010, 82 (05):
  • [23] Density-functional theory and chemistry
    Parr, RG
    CONDENSED MATTER THEORIES, VOL 15, 2000, 15 : 297 - 302
  • [24] Implicit density-functional theory
    Liu, Bin
    Percus, Jerome K.
    PHYSICAL REVIEW A, 2006, 74 (01):
  • [25] Subsystem density-functional theory
    Jacob, Christoph R.
    Neugebauer, Johannes
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2014, 4 (04) : 325 - 362
  • [26] PSEUDOPOTENTIALS IN DENSITY-FUNCTIONAL THEORY
    HARRIS, J
    JONES, RO
    PHYSICAL REVIEW LETTERS, 1978, 41 (03) : 191 - 194
  • [27] Density-functional theory for plutonium
    Soderlind, Per
    Landa, A.
    Sadigh, B.
    ADVANCES IN PHYSICS, 2019, 68 (01) : 1 - 47
  • [28] Partition density-functional theory
    Elliott, Peter
    Burke, Kieron
    Cohen, Morrel H.
    Wasserman, Adam
    PHYSICAL REVIEW A, 2010, 82 (02):
  • [29] Differentiability in density-functional theory
    Lindgren, I
    Salomonson, S
    ADVANCES IN QUANTUM CHEMISTRY, VOL 43, 2003, 43 : 95 - 117
  • [30] Spin in density-functional theory
    Jacob, Christoph R.
    Reiher, Markus
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2012, 112 (23) : 3661 - 3684