REARRANGEMENT INVARIANT SPACES WITH KATO PROPERTY

被引:8
|
作者
Hernandez, Francisco L. [1 ]
Semenov, Evgueni M. [2 ]
Tradacete, Pedro [3 ]
机构
[1] Univ Complutense Madrid, Dept Math Anal, E-28040 Madrid, Spain
[2] Voronezh State Univ, Dept Math, Voronezh 394006, Russia
[3] Univ Carlos III Madrid, Dept Math, E-28911 Madrid, Spain
关键词
rearrangement invariant space; strictly singular operator; disjointly homogeneous space;
D O I
10.7169/facm/2014.50.2.2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study rearrangement invariant spaces on which the classes of strictly singular and compact operators coincide. The relation between this property and the fact that every normalized disjoint sequence in the space has a subsequence equivalent to the unit vector basis of l(2) is analyzed.
引用
收藏
页码:215 / 232
页数:18
相关论文
共 50 条
  • [21] Subspaces of rearrangement-invariant spaces
    Hernandez, FL
    Kalton, NJ
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (04): : 794 - 833
  • [22] ISOMETRIES ON REARRANGEMENT-INVARIANT SPACES
    KALTON, NJ
    RANDRIANANTOANINA, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (04): : 351 - 355
  • [23] The Jung constant in rearrangement invariant spaces
    Franchetti, C
    Semenov, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (07): : 723 - 728
  • [24] RUC systems in rearrangement invariant spaces
    Dodds, PG
    Semenov, EM
    Sukochev, FA
    STUDIA MATHEMATICA, 2002, 151 (02) : 161 - 173
  • [25] The laplace transform on the rearrangement invariant spaces
    Erlin Castillo, Rene
    Miranda, B.
    Ramos-Fernandez, Julio C.
    QUAESTIONES MATHEMATICAE, 2022, 45 (12) : 1855 - 1875
  • [26] Strictly singular inclusions of rearrangement invariant spaces and Rademacher spaces
    Astashkin, Sergei V.
    Hernandez, Francisco L.
    Semenov, Evgeni M.
    STUDIA MATHEMATICA, 2009, 193 (03) : 269 - 283
  • [27] Sequences of Independent Functions in Rearrangement Invariant Spaces
    S. V. Astashkin
    Siberian Mathematical Journal, 2021, 62 : 189 - 198
  • [28] Tangent sequences in Orlicz and rearrangement invariant spaces
    Hitczenko, P
    MontgomerySmith, SJ
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 119 : 91 - 101
  • [29] Embeddings of rearrangement invariant spaces that are not strictly singular
    Montgomery-Smith, SJ
    Semenov, EM
    POSITIVITY, 2000, 4 (04) : 397 - 402
  • [30] Orthogonal Elements in Nonseparable Rearrangement Invariant Spaces
    Astashkin, S., V
    Semenov, E. M.
    DOKLADY MATHEMATICS, 2020, 102 (03) : 449 - 450