A Concordance Study of the Preprocessing Orders in Microarray Data

被引:0
|
作者
Kim, Sang-Cheol
Lee, Jae-hwi
Kim, Byung Soo
机构
关键词
Concordance measure; imputation; microarray; normalization; preprocessing; t3; statistic;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Researchers of microarray experiment transpose processed images of raw data to possible data of statistical analysis: it is preprocessing. Preprocessing of microarray has image filtering, imputation and normalization. There have been studied about several different methods of normalization and imputation, but there was not further study on the order of the procedures. We have no further study about which things put first on our procedure between normalization and imputation. This study is about the identification of differentially expressed genes(DEG) on the order of the preprocessing steps using two-dye cDNA microarray in colon cancer and gastric cancer. That is, we check for compare which combination of imputation and normalization steps can detect the DEG. We used imputation methods(K-nearly neighbor, Baysian principle comparison analysis) and normalization methods(global, within-print tip group, variance stabilization). Therefore, preprocessing steps have 12 methods. We identified concordance measure of DEG using the datasets to which the 12 different preprocessing orders were applied. When we applied preprocessing using variance stabilization of normalization method, there was a little variance in a sensitive way for detecting DEG.
引用
收藏
页码:585 / 594
页数:10
相关论文
共 50 条
  • [21] The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance
    Charles Wang
    Binsheng Gong
    Pierre R Bushel
    Jean Thierry-Mieg
    Danielle Thierry-Mieg
    Joshua Xu
    Hong Fang
    Huixiao Hong
    Jie Shen
    Zhenqiang Su
    Joe Meehan
    Xiaojin Li
    Lu Yang
    Haiqing Li
    Paweł P Łabaj
    David P Kreil
    Dalila Megherbi
    Stan Gaj
    Florian Caiment
    Joost van Delft
    Jos Kleinjans
    Andreas Scherer
    Viswanath Devanarayan
    Jian Wang
    Yong Yang
    Hui-Rong Qian
    Lee J Lancashire
    Marina Bessarabova
    Yuri Nikolsky
    Cesare Furlanello
    Marco Chierici
    Davide Albanese
    Giuseppe Jurman
    Samantha Riccadonna
    Michele Filosi
    Roberto Visintainer
    Ke K Zhang
    Jianying Li
    Jui-Hua Hsieh
    Daniel L Svoboda
    James C Fuscoe
    Youping Deng
    Leming Shi
    Richard S Paules
    Scott S Auerbach
    Weida Tong
    Nature Biotechnology, 2014, 32 : 926 - 932
  • [22] Evaluating the concordance between sequencing, imputation and microarray genotype calls in the GAW18 data
    Ally Rogers
    Andrew Beck
    Nathan L Tintle
    BMC Proceedings, 8 (Suppl 1)
  • [23] The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance
    Wang, Charles
    Gong, Binsheng
    Bushel, Pierre R.
    Thierry-Mieg, Jean
    Thierry-Mieg, Danielle
    Xu, Joshua
    Fang, Hong
    Hong, Huixiao
    Shen, Jie
    Su, Zhenqiang
    Meehan, Joe
    Li, Xiaojin
    Yang, Lu
    Li, Haiqing
    Labaj, Pawel P.
    Kreil, David P.
    Megherbi, Dalila
    Gaj, Stan
    Caiment, Florian
    van Delft, Joost
    Kleinjans, Jos
    Scherer, Andreas
    Devanarayan, Viswanath
    Wang, Jian
    Yang, Yong
    Qian, Hui-Rong
    Lancashire, Lee J.
    Bessarabova, Marina
    Nikolsky, Yuri
    Furlanello, Cesare
    Chierici, Marco
    Albanese, Davide
    Jurman, Giuseppe
    Riccadonna, Samantha
    Filosi, Michele
    Visintainer, Roberto
    Zhang, Ke K.
    Li, Jainying
    Hsieh, Jui-Hua
    Svoboda, Daniel L.
    Fuscoe, James C.
    Deng, Youping
    Shi, Leming
    Paules, Richard S.
    Auerbach, Scott S.
    Tong, Weida
    NATURE BIOTECHNOLOGY, 2014, 32 (09) : 926 - 932
  • [24] the Implementation and Application of the Microarray Preprocessing Generalized PDNN Model
    Wei, Wei
    Wan, Lin
    Qian, Minping
    Deng, Minghua
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOLS 1-4, 2009, : 1536 - 1540
  • [25] Impact of Microarray Preprocessing Techniques in Unraveling Biological Pathways
    Deandres-Galiana, Enrique J.
    Luis Fernandez-Martinez, Juan
    Saligan, Leorey N.
    Sonis, Stephen T.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2016, 23 (12) : 957 - 968
  • [26] Study on data preprocessing algorithm in web log mining
    Yuan, F
    Wang, LJ
    Yu, G
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 28 - 32
  • [27] Concordance Between Existing POLST Orders and Current Preferences
    Hickman, Susan
    Sachs, Greg
    Sudore, Rebecca
    Tang, Qing
    Myers, Anne
    JOURNAL OF PAIN AND SYMPTOM MANAGEMENT, 2021, 61 (03) : 687 - 687
  • [28] Preprocessing of Gravity Data
    Izvoltova, Jana
    Bacova, Dasa
    Chromcak, Jakub
    Hodas, Stanislav
    COMPUTATION, 2022, 10 (06)
  • [29] Comparing preprocessing strategies for 3D-Gene microarray data of extracellular vesicle-derived miRNAs
    Takemoto, Yuto
    Ito, Daisuke
    Komori, Shota
    Kishimoto, Yoshiyuki
    Yamada, Shinichiro
    Hashizume, Atsushi
    Katsuno, Masahisa
    Nakatochi, Masahiro
    BMC BIOINFORMATICS, 2024, 25 (01):
  • [30] Reproducibility of microarray studies: concordance of current analysis methods
    Wayland, Matt T.
    Bahn, Sabine
    FUNCTIONAL GENOMICS AND PROTEOMICS IN THE CLINICAL NEUROSCIENCES, 2006, 158 : 109 - 125