A METHOD OF SPECIFICATION OF FRACTAL SETS

被引:2
|
作者
Lisovik, L. P. [1 ]
Karnaukh, T. A. [1 ]
机构
[1] Taras Shevchenko Natl Univ, Kiev, Ukraine
关键词
fractal; R-transducer; R-system;
D O I
10.1007/s10559-009-9117-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The so-called R-systems are proposed for specifying sets. Formal properties of such a system are studied. The case of a bounded linear R-system is discussed and relations between R-systems and R-*-transducers are established. In particular, it is shown that a bounded linear R-system specifies a bounded closed set.
引用
收藏
页码:365 / 372
页数:8
相关论文
共 50 条
  • [21] VANISHING VISCOSITY FOR FRACTAL SETS
    Mosco, Umberto
    Vivaldi, Maria Agostina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (03) : 1207 - 1235
  • [22] Fundamental Sets of Fractal Functions
    M. A. Navascués
    A. K. B. Chand
    Acta Applicandae Mathematicae, 2008, 100 : 247 - 261
  • [23] DIMENSION PRINTS OF FRACTAL SETS
    REYES, M
    ROGERS, CA
    MATHEMATIKA, 1994, 41 (81) : 68 - 94
  • [24] Fractal dimensions for dissipative sets
    Stratmann, B
    Vogt, R
    NONLINEARITY, 1997, 10 (02) : 565 - 577
  • [25] Frames built on fractal sets
    Thirulogasanthar, K
    Bahsoun, W
    JOURNAL OF GEOMETRY AND PHYSICS, 2004, 50 (1-4) : 79 - 98
  • [26] Lipschitz equivalence of fractal sets in ℝ
    GuoTai Deng
    XingGang He
    Science China Mathematics, 2012, 55 : 2095 - 2107
  • [27] ARE TOPOGRAPHIC DATA SETS FRACTAL
    GILBERT, LE
    PURE AND APPLIED GEOPHYSICS, 1989, 131 (1-2) : 241 - 254
  • [28] Intersections of moving fractal sets
    Mandre, I.
    Kalda, J.
    EPL, 2013, 103 (01)
  • [29] Fractal sets in control systems
    Cheng, Daizhan
    Applied Mathematics and Mechanics (English Edition), 1993, 14 (08) : 735 - 744
  • [30] Angular projections of fractal sets
    Durrer, R
    Eckmann, JP
    Labini, FS
    Montuori, M
    Pietronero, L
    EUROPHYSICS LETTERS, 1997, 40 (05): : 491 - 496