A METHOD OF SPECIFICATION OF FRACTAL SETS

被引:2
|
作者
Lisovik, L. P. [1 ]
Karnaukh, T. A. [1 ]
机构
[1] Taras Shevchenko Natl Univ, Kiev, Ukraine
关键词
fractal; R-transducer; R-system;
D O I
10.1007/s10559-009-9117-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The so-called R-systems are proposed for specifying sets. Formal properties of such a system are studied. The case of a bounded linear R-system is discussed and relations between R-systems and R-*-transducers are established. In particular, it is shown that a bounded linear R-system specifies a bounded closed set.
引用
收藏
页码:365 / 372
页数:8
相关论文
共 50 条
  • [1] OPTIMIZING THE ADAPTIVE FAST MULTIPOLE METHOD FOR FRACTAL SETS
    Pouransari, Hadi
    Darve, Eric
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02): : A1040 - A1066
  • [2] On the specification and knowledge of sets
    Cmorej, P
    FILOZOFIA, 1999, 54 (10): : 701 - 716
  • [3] The language LinF for fractal specification
    Pereira, FMQ
    Rolla, LT
    Rezende, CG
    Carceroni, RL
    XVI BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 2003, : 67 - 74
  • [4] From fractal groups to fractal sets
    Bartholdi, L
    Grigorchuk, R
    Nekrashevych, V
    FRACTALS IN GRAZ 2001: ANALYSIS - DYNAMICS - GEOMETRY - STOCHASTICS, 2003, : 25 - 118
  • [5] Expectations on fractal sets
    Bailey, David H.
    Borwein, Jonathan M.
    Crandall, Richard E.
    Rose, Michael G.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 695 - 721
  • [6] APPROXIMATIONS OF FRACTAL SETS
    DUBUC, S
    ELQORTOBI, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 29 (01) : 79 - 89
  • [7] PERIMETER ON FRACTAL SETS
    BRAIDES, A
    DANCONA, P
    MANUSCRIPTA MATHEMATICA, 1991, 72 (01) : 5 - 25
  • [8] Optimization on fractal sets
    Riane, Nizar
    David, Claire
    OPTIMIZATION LETTERS, 2021, 15 (08) : 2681 - 2700
  • [9] Optimization on fractal sets
    Nizar Riane
    Claire David
    Optimization Letters, 2021, 15 : 2681 - 2700
  • [10] A note on fractal sets and the measurement of fractal dimension
    Sandau, K
    PHYSICA A, 1996, 233 (1-2): : 1 - 18