THE EIGENVALUES AND ENERGY OF INTEGRAL CIRCULANT GRAPHS

被引:0
|
作者
Mollahajiaghaei, Mohsen [1 ]
机构
[1] Amirkabir Univ Technol, Dept Math, POB 15914, Tehran, Iran
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called circulant if it is a Cayley graph on a cyclic group, i.e. its adjacency matrix is circulant. Let D be a set of positive, proper divisors of the integer n > 1. The integral circulant graph ICG(n) (D) has the vertex set Z(n) and the edge set E(ICG(n) (D)) = {{a, b}; gcd(a - b, n) is an element of D}. Let n = p(1)p(2) " " " pkm, where p(1), p(2), center dot center dot center dot, pk are distinct prime numbers and gcd(p(1)p(2) center dot center dot center dot pk, m) = 1. The open problem posed in paper [A. Ilie, The energy of unitary Cayley graphs, Linear Algebra Appl., 431 (2009) 1881-1889] about calculating the energy of an arbitrary integral circulant ICG(n)(D) is completely solved in this paper, where D = {p(1), p(2) center dot center dot center dot,pk}.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 50 条
  • [11] On the kernel of integral circulant graphs
    Sander, J. W.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 549 : 79 - 85
  • [12] On the diameter of integral circulant graphs
    Stevanovic, Dragan
    Petkovic, Marko
    Basic, Milan
    ARS COMBINATORIA, 2012, 106 : 495 - 500
  • [13] Integral mixed circulant graphs
    Kadyan, Monu
    Bhattacharjya, Bikash
    DISCRETE MATHEMATICS, 2023, 346 (01)
  • [14] Integral circulant graphs of prime power order with maximal energy
    Sander, J. W.
    Sander, T.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (12) : 3212 - 3232
  • [15] THE EXACT MAXIMAL ENERGY OF INTEGRAL CIRCULANT GRAPHS WITH PRIME POWER ORDER
    Sander, J. W.
    Sander, T.
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2013, 8 (02) : 19 - 40
  • [16] Minimal spread of integral circulant graphs
    Basic, Milan
    DISCRETE APPLIED MATHEMATICS, 2024, 342 : 317 - 333
  • [17] On the clique number of integral circulant graphs
    Basic, Milan
    Ilic, Aleksandar
    APPLIED MATHEMATICS LETTERS, 2009, 22 (09) : 1406 - 1411
  • [18] The geometric kernel of integral circulant graphs
    Sander, J. W.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03):
  • [19] Maximal diameter of integral circulant graphs
    Basic, Milan
    Ilic, Aleksandar
    Stamenkovic, Aleksandar
    INFORMATION AND COMPUTATION, 2024, 301
  • [20] On the automorphism group of integral circulant graphs
    Basic, Milan
    Ilic, Aleksandar
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):