A CHARACTERIZATION OF SOME (V2+2V3, V1+2V2-K-1,3)-MINIHYPERS AND SOME (VK-30, K, 3K-1-21-3)-CODES MEETING THE GRIESMER BOUND

被引:6
|
作者
HAMADA, N
HELLESETH, T
机构
[1] UNIV BERGEN,DEPT INFORMAT,N-5008 BERGEN,NORWAY
[2] OSAKA WOMENS UNIV,DEPT MATH,SAKAI,OSAKA 590,JAPAN
关键词
ERROR-CORRECTING CODES; GRIESMER BOUND; FINITE GEOMETRIES; MINIHYPERS;
D O I
10.1016/0378-3758(93)90147-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let F be a set of f points in a finite projective geometry PG(t,q) of t dimensions where t greater-than-or-equal-to 2, f greater-than-or-equal-to 1 and q is a prime power. If (a) \F and H\greater-than-or-equal-to m for any hyperplane H in PG(t,q) and (b) \F and H\=m for some hyperplane H in PG(t,q), then F is called an {fm;t,q}-minihyper where m greater-than-or-equal-to 0 and \A\ denotes the number of elements in the set A. Tamari (1981, 1984) characterized all {v(alpha+1), v(alpha);t,q}-minihypers where 0<alpha<t and v(l)=(q(l)-1)/(q-1) for any integer l greater-than-or-equal-to 0. Recently, Hamada and Deza (1988b) and Hamada and Helleseth (1990a) characterized all {v(alpha+1)+v(beta+1)+v(gamma+1),v(alpha)+v(beta)+v(gamma);t,q}-minihypers for any integers t, q, alpha, beta and gamma such that q greater-than-or-equal-to 5 and 0 less-than-or-equal-to alpha less-than-or-equal-to beta less-than-or-equal-to gamma < t. The purpose of this paper is to characterize all {v(alpha+1)+v(beta+1)+v(gamma+1),v(alpha)+v(beta)+v(gamma);t,q}-minihypers for the case t greater-than-or-equal-to 3, alpha=1, beta=gamma=2 and q=3. Using those results, (1) a geometrical characterization of 10-caps in PG(3,3) is given and (2) all (n,k,d,3)-codes meeting the Griesmer bound are characterized for the case k greater-than-or-equal-to 4 and d=3k-1-21.
引用
收藏
页码:387 / 402
页数:16
相关论文
共 50 条
  • [31] Two Constructions of (v, (v-1)/2, (v-3)/2) difference families
    Ding, Cunsheng
    JOURNAL OF COMBINATORIAL DESIGNS, 2008, 16 (02) : 164 - 171
  • [32] V3+ sensitized upconversion in Cs2NaScCl6:Pr3+; V3+ and K2NaScF6:Er3+; V3+
    Reinhard, C
    Krämer, K
    Biner, DA
    Güdel, HU
    JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 374 (1-2) : 133 - 136
  • [33] K2O-V2O5-SO3 SYSTEM
    KRASILNIKOV, VN
    GLAZYRIN, MP
    ZHURNAL NEORGANICHESKOI KHIMII, 1982, 27 (10): : 2659 - 2661
  • [34] Collisional removal of NO (B-2 Pi, v=2 and 3) at 230 K
    Hwang, ES
    Lacoursiere, J
    Copeland, RA
    Slanger, TG
    JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (12): : 4522 - 4526
  • [35] K2O-V2O4-SO3 SYSTEM
    KRASILNIKOV, VN
    GLAZYRIN, MP
    IVAKIN, AA
    ZHURNAL NEORGANICHESKOI KHIMII, 1983, 28 (08): : 2111 - 2115
  • [36] SIMULTANEOUS ANALYSIS OF V1+V2 AND V2+V3 BANDS OF HYDROGEN TELLURIDE
    MONCUR, NK
    WILLSON, PD
    EDWARDS, TH
    JOURNAL OF MOLECULAR SPECTROSCOPY, 1974, 52 (02) : 181 - 195
  • [37] The sizes ofmaximal (v, k, k-2, k-1) optical orthogonal codes
    Fang, Zenghui
    Zhou, Junling
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (05) : 807 - 824
  • [38] 2-(v,k,1) DESIGNS AND PSL (3,q) WHERE q IS ODD
    Ding ShifengDept. of Math.
    Applied Mathematics:A Journal of Chinese Universities, 2003, (03) : 343 - 351
  • [39] ANALYSIS OF 2V2, V1, AND V3 OF H2S
    GILLIS, JR
    EDWARDS, TH
    JOURNAL OF MOLECULAR SPECTROSCOPY, 1981, 85 (01) : 55 - 73
  • [40] 2-(v,k,1) Designs and PSL (3,q) where q is ODD
    Ding Shifeng
    Applied Mathematics-A Journal of Chinese Universities, 2003, 18 (3) : 343 - 351