UNIT DISK GRAPHS

被引:871
|
作者
CLARK, BN [1 ]
COLBOURN, CJ [1 ]
JOHNSON, DS [1 ]
机构
[1] AT&T BELL LABS, MURRAY HILL, NJ 07974 USA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0012-365X(90)90358-O
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Unit disk graphs are the intersection graphs of equal sized circles in the plane: they provide a graph-theoretic model for broadcast networks (cellular networks) and for some problems in computational geometry. We show that many standard graph theoretic problems remain NP-complete on unit disk graphs, including coloring, independent set, domination, independent domination, and connected domination; NP-completeness for the domination problem is shown to hold even for grid graphs, a subclass of unit disk graphs. In contrast, we give a polynomial time algorithm for finding cliques when the geometric representation (circles in the plane) is provided.
引用
收藏
页码:165 / 177
页数:13
相关论文
共 50 条
  • [11] The roman domination problem in unit disk graphs
    Shang, Weiping
    Hu, Xiaodong
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 3, PROCEEDINGS, 2007, 4489 : 305 - +
  • [12] Shortest Path Separators in Unit Disk Graphs
    Harb, Elfarouk
    Huang, Zhengcheng
    Zheng, Da Wei
    Leibniz International Proceedings in Informatics, LIPIcs, 308
  • [13] Minimum Clique Partition in Unit Disk Graphs
    Dumitrescu, Adrian
    Pach, Janos
    GRAPHS AND COMBINATORICS, 2011, 27 (03) : 399 - 411
  • [14] Improper colouring of (random) unit disk graphs
    Kang, Ross J.
    Muller, Tobias
    Sereni, Jean-Sebastien
    DISCRETE MATHEMATICS, 2008, 308 (08) : 1438 - 1454
  • [15] Planar Hop Spanners for Unit Disk Graphs
    Catusse, Nicolas
    Chepoi, Victor
    Vaxes, Yann
    ALGORITHMS FOR SENSOR SYSTEMS, 2010, 6451 : 16 - 30
  • [16] On Forbidden Induced Subgraphs for Unit Disk Graphs
    Aistis Atminas
    Viktor Zamaraev
    Discrete & Computational Geometry, 2018, 60 : 57 - 97
  • [17] On full Steiner trees in unit disk graphs
    Biniaz, Ahmad
    Maheshwari, Anil
    Smid, Michiel
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2015, 48 (06): : 453 - 458
  • [18] Sparse hop spanners for unit disk graphs
    Dumitrescu, Adrian
    Ghosh, Anirban
    Toth, Csaba D.
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2022, 100
  • [19] Minimum Clique Partition in Unit Disk Graphs
    Adrian Dumitrescu
    János Pach
    Graphs and Combinatorics, 2011, 27 : 399 - 411
  • [20] Plane Hop Spanners for Unit Disk Graphs
    Biniaz, Ahmad
    ALGORITHMS AND DATA STRUCTURES, WADS 2019, 2019, 11646 : 140 - 154