CURVES OF GENERALIZED AW(k)-TYPE IN EUCLIDEAN SPACES

被引:0
|
作者
Arslan, Kadri [1 ]
Guvenc, Saban [2 ]
机构
[1] Uludag Univ, Dept Math, Gorukle Campus, Bursa, Turkey
[2] Balikesir Univ, Dept Math, Balikesir, Turkey
来源
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY | 2014年 / 7卷 / 02期
关键词
Curves of AW(k)-type; curves of osculating order d;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we consider curves of generalized AW(k)-type of Euclidean n-space. We give curvature conditions of these kind of curves.
引用
收藏
页码:25 / 36
页数:12
相关论文
共 50 条
  • [31] Generalized axial maps and Euclidean immersions of lens spaces
    Astey, L
    Davis, DM
    González, JS
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2003, 9 (01): : 151 - 163
  • [32] A CONSTRUCTION OF LAGRANGIAN SUBMANIFOLDS IN COMPLEX EUCLIDEAN SPACES WITH LEGENDRE CURVES
    Oh, Yun Myung
    KODAI MATHEMATICAL JOURNAL, 2009, 32 (03) : 521 - 529
  • [33] Quaternionic Generalized Norm Retrieval in Quaternion Euclidean Spaces
    Yang, Ming
    Li, Yun-Zhang
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2025, 35 (02)
  • [34] Mixed weak-type inequalities in Euclidean spaces and in spaces of the homogeneous type
    Ibanez-Firnkorn, Gonzalo
    Rivera-Rios, Israel Pablo
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (04) : 1370 - 1406
  • [35] ON THE EQUIFORM DIFFERENTIAL GEOMETRY OF AW(k)-TYPE CURVES IN PSEUDO-GALILEAN 3-SPACE
    Saad, M. Khalifa
    Abdel-Aziz, H. S.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2020, 18 (01): : 1 - 15
  • [36] The Essential Norm of a Generalized Composition Operator Between Bloch-Type Spaces and Q K Type Spaces
    Yu, Yanyan
    Liu, Yongmin
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (06) : 1231 - 1240
  • [37] Isoperimetric inequalities of Euclidean type in metric spaces
    S. Wenger
    Geometric & Functional Analysis GAFA, 2005, 15 : 534 - 554
  • [38] Isoperimetric inequalities of Euclidean type in metric spaces
    Wenger, S
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (02) : 534 - 554
  • [39] Immersions of Finite Geometric Type in Euclidean Spaces
    J. L. M. Barbosa
    R. Fukuoka
    F. Mercuri
    Annals of Global Analysis and Geometry, 2002, 22 : 301 - 315
  • [40] Weingarten hypersurfaces of the spherical type in Euclidean spaces
    Machado, Cid D. F.
    Riveros, Carlos M. C.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2020, 61 (02): : 213 - 236