为了探索紫外-可见-近红外反射光谱测定油茶籽油掺伪量的方法,按照不同掺伪比例制备了244个油茶籽油掺伪大豆油、菜籽油、花生油、玉米油的样本,以自主搭建的实验平台采集所制备样本在200~1 100 nm范围内的反射光谱。将原始光谱进行Savitzky-Golay(SG)-连续小波变换(CWT)预处理后,利用Kennard-Stone(K-S)算法以2∶1的比例将样本划分成校正集和预测集。采用竞争性自适应重加权算法(CARS)、连续投影算法(SPA)、自主软收缩算法(BOSS)、迭代变量子集优化算法(IVSO)进行特征波长选择,分别建立基于支持向量机(SVM)、极限学习机(ELM)、随机森林(RF)的油茶籽油掺伪量快速预测模型,同时对特征波长的特性进行了研究。结果表明:原始光谱经过SG-CWT(L5)预处理和BOSS特征波长筛选后,建立的基于SVM的油茶籽油掺伪量快速预测模型能够鉴别掺伪量为1%及以上的油茶籽油,该模型在十折交叉验证和网格搜索法下得到最佳惩罚因子(c)和核函数(γ)分别为5.278 0和0.108 8,其预测决定系数(RP2)、预测均方根误差(RMSEP)、预测平均绝对误差(MAEP)分别为0.998 5、0.013 4、0.010 2。特征波长聚集程度和陡度对模型预测结果存在一定影响。综上,建立的基于反射光谱的油茶籽油掺伪量快速预测模型预测误差小,预测效果较好。