3D Point Cloud Semantic Segmentation Based PAConv and SE_variant

被引:0
|
作者
ZHANG Ying [1 ]
SUN Yue [1 ]
WU Lin [1 ]
ZHANG Lulu [1 ]
MENG Bumin [1 ]
机构
[1] School of automation and electronic information, Xiangtan University
关键词
D O I
10.15878/j.cnki.instrumentation.2023.04.001
中图分类号
TP391.41 []; TP18 [人工智能理论];
学科分类号
080203 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the increasing popularity of 3D sensors(e.g., Kinect) and light field cameras, technologies such as driverless, smart home and virtual reality have become hot spots for engineering applications. As an important part of 3D vision tasks, point cloud semantic segmentation has received a lot of attention from researchers. In this work, we focus on realistically collected indoor point cloud data and propose a point cloud semantic segmentation method based on PAConv and SE_variant. The SE_variant module captures global perception from a broad perspective of feature space by fusing different pooling methods, which fully utilize the channel information of point clouds. The effectiveness of the method is verified by comparing with other methods on S3DIS and ScanNetV2 semantic tagging benchmarks, and achieving 65.3% mIoU in S3DIS, 47.6% mIoU in ScanNetV2. The results of the ablation experiments verify the effectiveness of the key modules and analyze how to use the attention mechanism to improve the 3D semantic segmentation performance.
引用
收藏
页码:27 / 38
页数:12
相关论文
共 50 条
  • [31] Semantic segmentation of 3D point cloud based on boundary point estimation and sparse convolution neural network
    Yang J.
    Zhang C.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (06): : 1121 - 1132
  • [32] Rethinking Few-shot 3D Point Cloud Semantic Segmentation
    An, Zhaochong
    Sun, Guolei
    Liu, Yun
    Liu, Fayao
    Wu, Zongwei
    Wang, Dan
    Van Gool, Luc
    Belongie, Serge
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 3996 - 4006
  • [33] 3D Point Cloud Semantic Segmentation Through Functional Data Analysis
    De La Fuente, Manuel Oviedo
    Cabo, Carlos
    Roca-Pardinas, Javier
    Loudermilk, E. Louise
    Ordonez, Celestino
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2024, 29 (04) : 723 - 744
  • [34] 3d indoor point cloud semantic segmentation using image and voxel
    Yeom S.-S.
    Ha J.-E.
    Ha, Jong-Eun (jeha@seoultech.ac.kr), 1600, Institute of Control, Robotics and Systems (27): : 1000 - 1007
  • [35] SHREC 2020: 3D point cloud semantic segmentation for street scenes
    Ku, Tao
    Veltkamp, Remco C.
    Boom, Bas
    Duque-Arias, David
    Velasco-Forero, Santiago
    Deschaud, Jean-Emmanuel
    Goulette, Francois
    Marcotegui, Beatriz
    Ortega, Sebastian
    Trujillo, Agustin
    Pablo Suarez, Jose
    Miguel Santana, Jose
    Ramirez, Cristian
    Akadas, Kiran
    Gangisetty, Shankar
    COMPUTERS & GRAPHICS-UK, 2020, 93 : 13 - 24
  • [36] A GLOBAL POINT-SIFT ATTENTION NETWORK FOR 3D POINT CLOUD SEMANTIC SEGMENTATION
    Jia, Meixia
    Li, Aijin
    Wu, Zhaoyang
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5065 - 5068
  • [37] AN IMAGE-BASED DEEP LEARNING WORKFLOW FOR 3D HERITAGE POINT CLOUD SEMANTIC SEGMENTATION
    Pellis, E.
    Murtiyoso, A.
    Masiero, A.
    Tucci, G.
    Betti, M.
    Grussenmeyer, P.
    9TH INTERNATIONAL WORKSHOP 3D-ARCH 3D VIRTUAL RECONSTRUCTION AND VISUALIZATION OF COMPLEX ARCHITECTURES, VOL. 46-2, 2022, : 429 - 434
  • [38] Semantic Segmentation of 3D Point Cloud Based on Spatial Eight-Quadrant Kernel Convolution
    Liu, Liman
    Yu, Jinjin
    Tan, Longyu
    Su, Wanjuan
    Zhao, Lin
    Tao, Wenbing
    REMOTE SENSING, 2021, 13 (16)
  • [39] SVASeg: Sparse Voxel-Based Attention for 3D LiDAR Point Cloud Semantic Segmentation
    Zhao, Lin
    Xu, Siyuan
    Liu, Liman
    Ming, Delie
    Tao, Wenbing
    REMOTE SENSING, 2022, 14 (18)
  • [40] SAT3D: Slot Attention Transformer for 3D Point Cloud Semantic Segmentation
    Ibrahim, Muhammad
    Akhtar, Naveed
    Anwar, Saeed
    Mian, Ajmal
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (05) : 5456 - 5466