Phase-locked single-mode terahertz quantum cascade lasers array

被引:0
|
作者
Yunfei Xu [1 ,2 ]
Weijiang Li [1 ,2 ]
Yu Ma [3 ]
Quanyong Lu [3 ]
Jinchuan Zhang [1 ]
Shenqiang Zhai [1 ]
Ning Zhuo [1 ]
Junqi Liu [1 ,2 ]
Shuman Liu [1 ,2 ]
Fengmin Cheng [1 ]
Lijun Wang [1 ,2 ]
Fengqi Liu [1 ,2 ]
机构
[1] Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices
[2] Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences
[3] Division of Quantum Materials and Devices, Beijing Academy of Quantum Information Sciences
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TN248 [激光器];
学科分类号
0803 ; 080401 ; 080901 ;
摘要
We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs) array, with a single-mode pulse power of 108 mW at 13 K. The device utilizes a Talbot cavity to achieve phase locking among five ridge lasers with first-order buried distributed feedback(DFB) grating, resulting in nearly five times amplification of the single-mode power. Due to the optimum length of Talbot cavity depends on wavelength, the combination of Talbot cavity with the DFB grating leads to better power amplification than the combination with multimode Fabry-Perot(F-P) cavities. The Talbot cavity facet reflects light back to the ridge array direction and achieves self-imaging in the array, enabling phase-locked operation of ridges. We set the spacing between adjacent elements to be 220 μm, much larger than the free-space wavelength, ensuring the operation of the fundamental supermode throughout the laser’s dynamic range and obtaining a high-brightness far-field distribution. This scheme provides a new approach for enhancing the single-mode power of THz QCLs.
引用
收藏
页码:99 / 104
页数:6
相关论文
共 50 条
  • [31] Generation of single-mode and phase-locked frequency microcombs without mode crossings
    Liu, H.
    Huang, S. -W.
    Yang, J.
    Vinod, A. K.
    Yu, M.
    Kwong, D. -L.
    Wong, C. W.
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [32] Phase-locked of single-mode laser driven by quantum noise and nonlinear colored pump noise
    Zhang, Li
    Yuan, Xiuhua
    Zhongguo Jiguang/Chinese Journal of Lasers, 2012, 39 (07):
  • [33] Single-lobed emission from phase-locked array lasers
    Yang, J.J.
    Jansen, M.
    Electronics Letters, 1986, 22 (01): : 2 - 4
  • [34] SINGLE-LOBED EMISSION FROM PHASE-LOCKED ARRAY LASERS
    YANG, JJ
    JANSEN, M
    ELECTRONICS LETTERS, 1986, 22 (01) : 2 - 4
  • [35] Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers
    Liang, Guozhen
    Liang, Houkun
    Zhang, Ying
    Khanna, Suraj P.
    Li, Lianhe
    Davies, A. Giles
    Linfield, Edmund
    Lim, Dau Fatt
    Tan, Chuan Seng
    Yu, Siu Fung
    Liu, Hui Chun
    Wang, Qi Jie
    APPLIED PHYSICS LETTERS, 2013, 102 (03)
  • [36] Phase-locked terahertz plasmonic laser array with 2 W output power in a single spectral mode
    Jin, Yuan
    Reno, John L.
    Kumar, Sushil
    OPTICA, 2020, 7 (06) : 708 - 715
  • [37] Mid-infrared multiheterodyne spectroscopy with phase-locked quantum cascade lasers
    Westberg, J.
    Sterczewski, L. A.
    Wysocki, G.
    APPLIED PHYSICS LETTERS, 2017, 110 (14)
  • [38] Single-Mode Surface-Emitting Terahertz Quantum Cascade Lasers Operating up to ∼ 150 K
    Kumar, Sushil
    Williams, Benjamin S.
    Qin, Qi
    Lee, Ian W. M.
    Hu, Qing
    Reno, John L.
    2007 CONFERENCE ON LASERS & ELECTRO-OPTICS/QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2007), VOLS 1-5, 2007, : 2358 - +
  • [39] Surface emitting, single-mode quantum cascade laser array
    Jouy, Pierre
    Bonzon, Christopher
    Wolf, Johanna
    Sueess, Martin
    Beck, Mattias
    Faist, Jerome
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [40] Low-divergence single-mode terahertz quantum cascade laser
    M. I. Amanti
    M. Fischer
    G. Scalari
    M. Beck
    J. Faist
    Nature Photonics, 2009, 3 : 586 - 590