基于密度泛函理论研究Co、Ni、As 掺杂载金黄铁矿的电子结构和稳定性

被引:1
|
作者
吴德宝 [1 ]
唐云 [1 ,2 ]
李国辉 [3 ]
吴波 [1 ]
聂光华 [1 ,2 ]
机构
[1] 贵州大学矿业学院
[2] 贵州省非金属矿产资源综合利用重点试验室
[3] 紫金矿业集团股份有限公司
关键词
载金黄铁矿; 掺杂; 密度泛函理论; 氧化预处理;
D O I
10.19855/j.1000-0364.2025.016004
中图分类号
TD981 [黑色金属矿产];
学科分类号
摘要
Co、Ni、As掺杂的黄铁矿晶体具有不同物理性质,会影响其载金性能和氧化行为.论文基于密度泛函理论计算,采用了CASTEP软件对载金黄铁矿以及不同晶体缺陷的载金黄铁矿进行模拟计算,以研究Co、Ni、As掺杂载金黄铁矿的电子结构,并据此分析其稳定性.综合半导体类型和能量分析,不同晶体缺陷的载金黄铁矿稳定性顺序为:Fe32S63AsAu32S64Au31S64CoAu31S64NiAu,即As取代的载金黄铁矿在氧化预处理时更容易被氧化.该研究可以进一步解释微细浸染型金矿中具有晶体缺陷的载金黄铁矿氧化预处理规律.
引用
收藏
页码:151 / 161
页数:11
相关论文
共 31 条
  • [21] Arsenic incorporation into FeS 2 pyrite and its influence on dissolution: A DFT study.[J].Marc Blanchard;Maria Alfredsson;John Brodholt;Kate Wright;C. Richard A. Catlow.Geochimica et Cosmochimica Acta.2006, 3
  • [22] Comparative investigations on sulfidic gold ore processing: A novel biooxidation process option.[J].Junmo Ahn;Jiajia Wu;Jaewoo Ahn;Jaeheon Lee.Minerals Engineering.2019,
  • [23] Interactions of mimic weathered pyrite surfaces (FeS 2 ) with acidic culture media (0 K): An approach for (bio)leaching applications.[J].Albert Saavedra;J. Viridiana García-Meza;Eduardo Cortón;Ignacio González.Hydrometallurgy.2018,
  • [24] The mechanism of defect induced hydroxylation on pyrite surfaces and implications for hydroxyl radical generation in prebiotic chemistry.[J].Haiyang Xian;Jianxi Zhu;Wei Tan;Hongmei Tang;Peng Liu;Runliang Zhu;Xiaoliang Liang;Jingming Wei;Hongping He;H. Henry Teng.Geochimica et Cosmochimica Acta.2018,
  • [25] Alkaline leaching pretreatment and cyanidation of arsenical gold ore from the Carlin-type Zarshuran deposit
    Bidari, Ehsan
    Aghazadeh, Valeh
    [J]. CANADIAN METALLURGICAL QUARTERLY, 2018, 57 (03) : 283 - 293
  • [26] Study on the oxygen pressure alkaline leaching of gold with generated thiosulfate from sulfur oxidation.[J].Bin Xu;Ke Li;Qiang Zhong;Qian Li;Yongbin Yang;Tao Jiang.Hydrometallurgy.2018,
  • [27] Textures; trace elements; and Pb isotopes of sulfides from the Haopinggou vein deposit; southern North China Craton: implications for discrete Au and Ag–Pb–Zn mineralization.[J].Zhan-Ke Li;Jian-Wei Li;David R. Cooke;Leonid Danyushevsky;Lejun Zhang;Hugh O’Brien;Yann Lahaye;Wen Zhang;Hai-Jun Xu.Contributions to Mineralogy and Petrology.2016, 12
  • [28] DFT study of interactions between calcium hydroxyl ions and pyrite; marcasite; pyrrhotite surfaces.[J].Cuihua Zhao;Jianhua Chen;Yuqiong Li;De wei Huang;Weizhou Li.Applied Surface Science.2015,
  • [29] Floatability and oxidation of pyrite with different spatial symmetry.[J].Yongjun Xian;Yijie Wang;Shuming Wen;Qi Nie;Jiushuai Deng.Minerals Engineering.2015,
  • [30] Defect energy levels and electronic behavior of Ni-, Co-, and As-doped synthetic pyrite (FeS2)
    Lehner, S. W.
    Newman, N.
    van Schilfgaarde, M.
    Bandyopadhyay, S.
    Savage, K.
    Buseck, P. R.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 111 (08)