Terahertz quasi-perfect vortex beam with integer-order and fractional-order generated by spiral spherical harmonic axicon

被引:0
|
作者
涂思语 [1 ]
刘德峰 [2 ]
刘劲松 [1 ]
杨振刚 [1 ]
王可嘉 [1 ]
机构
[1] Wuhan National Laboratory for Optoelectronics,School of Optical and Electronic Information,Huazhong University of Science and Technology
[2] AVIC Beijing Changcheng Aeronautical Measurement and Control Technology Research Institute
基金
中央高校基本科研业务费专项资金资助;
关键词
D O I
暂无
中图分类号
O431.1 [光的电磁理论];
学科分类号
070207 ; 0803 ;
摘要
We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spiral phase plate is designed and called spiral spherical harmonic axicon. A terahertz Gaussian beam passes through the spiral spherical harmonic axicon to generate a terahertz vortex beam. When only the topological charge number carried by spiral spherical harmonic axicon increases, the ring radius of terahertz vortex beam increases slightly, so the beam is shaped into a terahertz quasi-perfect vortex beam. Importantly, the terahertz quasi-perfect vortex beam can carry not only integer-order topological charge number but also fractional-order topological charge number. This is the first time that vortex beam and quasi-perfect vortex beam with fractional-order have been successfully realized in terahertz domain and experiment.
引用
收藏
页码:334 / 343
页数:10
相关论文
共 50 条
  • [41] Function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems
    Zhou Ping
    Cao Yu-Xia
    CHINESE PHYSICS B, 2010, 19 (10)
  • [42] Comparative exploration on bifurcation behavior for integer-order and fractional-order delayed BAM neural networks
    Xu, Changjin
    Mu, Dan
    Liu, Zixin
    Pang, Yicheng
    Liao, Maoxin
    Li, Peiluan
    Yao, Lingyun
    Qin, Qiwen
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2022, 27 (06): : 1030 - 1053
  • [43] Active sliding mode for synchronization between a fractional-order chaos and integer-order liu system
    1600, CESER Publications, Post Box No. 113, Roorkee, 247667, India (51):
  • [44] Dislocated projective synchronization between fractional-order chaotic systems and integer-order chaotic systems
    Zhang, Xiao-Qing
    Xiao, Jian
    Zhang, Qing
    OPTIK, 2017, 130 : 1139 - 1150
  • [45] Extended Fractional-Order Memory Reset Control for Integer-Order LTI Systems and Experimental Demonstration
    Weise, Christoph
    Wulff, Kai
    Reger, Johann
    IFAC PAPERSONLINE, 2020, 53 (02): : 7683 - 7690
  • [46] Synchronization of fractional-order and integer-order chaotic (hyper-chaotic) systems with different dimensions
    Xiaoyan Yang
    Heng Liu
    Shenggang Li
    Advances in Difference Equations, 2017
  • [47] Synchronization and parameters identification of uncertain fractional-order chaotic system using integer-order system
    Li An-Ping
    Liu Guo-Rong
    Shen Xi-Qun
    2013 FOURTH INTERNATIONAL CONFERENCE ON DIGITAL MANUFACTURING AND AUTOMATION (ICDMA), 2013, : 1361 - 1364
  • [48] Adaptive Fractional-Order Backstepping Control for a General Class of Nonlinear Uncertain Integer-Order Systems
    Li, Xinyao
    Wen, Changyun
    Li, Xiaolei
    He, Jinsong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (07) : 7246 - 7256
  • [49] Function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems
    周平
    曹玉霞
    Chinese Physics B, 2010, 19 (10) : 167 - 170
  • [50] Synchronization between Fractional-Order and Integer-Order Hyperchaotic Systems via Sliding Mode Controller
    Wu, Yan-Ping
    Wang, Guo-Dong
    JOURNAL OF APPLIED MATHEMATICS, 2013,