Steering surface reconstruction of hybrid metal oxides for efficient oxygen evolution reaction in water splitting and zinc-air batteries

被引:0
|
作者
Jie Zhu [1 ,2 ]
Junxue Chen [1 ]
Xida Li [1 ]
Kun Luo [3 ]
Zewei Xiong [4 ]
Zhiyu Zhou [1 ]
Wenyun Zhu [1 ]
Zhihong Luo [1 ]
Jingbin Huang [5 ]
Yibing Li [1 ]
机构
[1] Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Materials Science and Engineering, Guilin University of Technology
[2] School of Chemistry and Chemical Engineering, Beijing Institute of Technology
[3] School of Materials Science and Engineering, Changzhou University
[4] Wuhan Sunmoon Battery Co., Ltd
[5] The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University
关键词
D O I
暂无
中图分类号
TM911.41 [金属-空气电池]; TQ426 [催化剂(触媒)];
学科分类号
080502 ; 0808 ; 081705 ;
摘要
Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER) conditions; however, rationally regulating reconstruction in a targeted manner for constructing highly active OER electrocatalysts remains a formidable challenge. Here, an electrochemical activation strategy with selective etching was utilized to guide the reconstruction process of a hybrid cobalt-molybdenum oxide(CoMoO4/Co3O4@CC) in a favorable direction to improve the OER performance. Both in-situ Raman and multiple ex-situ characterization tools demonstrate that controlled surface reconstruction can be easily achieved through Mo etching, with the formation of a dynamically stable amorphous-crystalline heterostructure. Theoretical calculations together with experimental results reveal that the synergistic effects between amorphous CoOOH and crystalline Co3O4are crucial in enhancing the catalytic performance. Consequently, the reconstructed CoMoO4/Co3O4@CC exhibits a low overpotential of 250 mV to achieve a current density of 10 mA cm-2in 1 M KOH, and more importantly it can be practiced in electrolytic water splitting and rechargeable zinc-air batteries devices, achieving ultra-long stability for over 500 and 1200 h, respectively. This work provides a promising route for the construction of high-performance electrocatalysts.
引用
收藏
页码:383 / 393
页数:11
相关论文
共 50 条
  • [1] Steering surface reconstruction of hybrid metal oxides for efficient oxygen evolution reaction in water splitting and zinc-air batteries
    Zhu, Jie
    Chen, Junxue
    Li, Xida
    Luo, Kun
    Xiong, Zewei
    Zhou, Zhiyu
    Zhu, Wenyun
    Luo, Zhihong
    Huang, Jingbin
    Li, Yibing
    JOURNAL OF ENERGY CHEMISTRY, 2024, 92 : 383 - 393
  • [2] NiCoFeP Nanofibers as an Efficient Electrocatalyst for Oxygen Evolution Reaction and Zinc-Air Batteries
    Bian, Juanjuan
    Sun, Chunwen
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (06):
  • [3] Efficient oxygen evolution reaction in SrCo0.8Fe0.2O3-δ perovskite and surface reconstruction for practical zinc-air batteries
    Nie, Rigang
    Deng, Yiqun
    Yang, Hui
    Tan, Ye
    Yuan, Huibo
    Sagar, Rizwan Ur Rehman
    Liang, Tongxiang
    APPLIED SURFACE SCIENCE, 2021, 552
  • [4] An efficient and durable trifunctional electrocatalyst for zinc-air batteries driven overall water splitting
    Logeshwaran, Natarajan
    Ramakrishnan, Shanmugam
    Chandrasekaran, Selvaraj Selva
    Vinothkannan, Mohanraj
    Kim, Ae Rhan
    Sengodan, Sivaprakash
    Velusamy, Dhinesh Babu
    Varadhan, Purushothaman
    He, Jr-Hau
    Yoo, Dong Jin
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 297
  • [5] y A nanostructured nickel/carbon matrix as an efficient oxygen evolution reaction electrocatalyst for rechargeable zinc-air batteries
    Cui, Chengqiang
    Ge, Xiaoming
    An, Tao
    Li, Bing
    Wuu, Delvin
    Tham, Nguk Neng
    Zhang, Kai
    He, Yunbo
    Liu, Zhaolin
    INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (07): : 1873 - 1880
  • [6] A pair of metal organic framework (MOF)-derived oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts for zinc-air batteries
    Agarwal, Soham
    Yu, Xingwen
    Manthiram, Arumugam
    MATERIALS TODAY ENERGY, 2020, 16
  • [7] Interface of Nickel Sulfides Optimizing Surface Reconstruction toward Efficient Bifunctional Oxygen Electrocatalysis in Rechargeable Zinc-Air Batteries
    Yan, Yu
    Che, Zhongxuan
    Song, Meirong
    Yu, Hongjie
    Huang, Chuanxue
    Zhou, Wei
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (21) : 11278 - 11287
  • [8] A-site deficient perovskite nanofibers boost oxygen evolution reaction for zinc-air batteries
    Wu, Xuyang
    Miao, He
    Hu, Ruigan
    Chen, Bin
    Yin, Mingming
    Zhang, Houcheng
    Xia, Lan
    Zhang, Chunfei
    Yuan, Jinliang
    APPLIED SURFACE SCIENCE, 2021, 536
  • [9] Hollow Nanocages of NixCo1-xSe for Efficient Zinc-Air Batteries and Overall Water Splitting
    Qian, Zhengxin
    Chen, Yinghuan
    Tang, Zhenghua
    Liu, Zhen
    Wang, Xiufang
    Tian, Yong
    Gao, Wei
    NANO-MICRO LETTERS, 2019, 11 (01)
  • [10] Perovskite Catalysts for Oxygen Evolution and Reduction Reactions in Zinc-Air Batteries
    Zhu, Zheng
    Song, Qiangqiang
    Xia, Baokai
    Jiang, Lili
    Duan, Jingjing
    Chen, Sheng
    CATALYSTS, 2022, 12 (12)